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ABSTRACT

We study the dynamics of Hamiltonian diffeomorphisms on convex sym-

plectic manifolds. To this end we first establish an explicit isomorphism

between the Floer homology and the Morse homology of such a manifold,

and then use this isomorphism to construct a biinvariant metric on the

group of compactly supported Hamiltonian diffeomorphisms analogous

to the metrics constructed by Viterbo, Schwarz and Oh. These tools are

then applied to prove and reprove results in Hamiltonian dynamics. Our

applications comprise a uniform lower estimate for the slow entropy of

a compactly supported Hamiltonian diffeomorphism, the existence of in-

finitely many non-trivial periodic points of a compactly supported Hamil-

tonian diffeomorphism of a subcritical Stein manifold, new cases of the

Weinstein conjecture, and, most noteworthy, new existence results for

closed trajectories of a charge in a magnetic field on almost all small

energy levels. We shall also obtain some new Lagrangian intersection

results.
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1. Introduction and main results

Consider a 2n-dimensional compact connected symplectic manifold (M,ω) with

non-empty boundary ∂M . The boundary ∂M is said to be convex if there

exists a Liouville vector field X (i.e., LXω = dιXω = ω) which is defined near

∂M and is everywhere transverse to ∂M , pointing outwards; equivalently, there

exists a 1-form α on ∂M such that dα = ω|∂M and such that α ∧ (dα)n−1 is a

volume form inducing the boundary orientation of ∂M ⊂M .

Definition (cf. [14]): (i) A compact symplectic manifold (M,ω) is convex if it

has non-empty convex boundary.

(ii) A non-compact symplectic manifold (M,ω) is convex if there exists an

increasing sequence of compact convex submanifolds Mi ⊂ M exhausting M ,

that is,

M1 ⊂M2 ⊂ · · · ⊂Mi ⊂ · · · ⊂M and
⋃

i

Mi = M.

A symplectic manifold (M,ω) is exact if ω = dλ and weakly exact if [ω]

vanishes on π2(M).
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Remarks on terminology: 1. A “compact convex symplectic manifold” is

called “compact symplectic manifold with contact type boundary” for instance

in [4, 5].

2. By “weakly exact” we do not mean that the first Chern class c1 of (M,ω)

also vanishes on π2(M).

Examples: 1. Cotangent bundles. Recall that every cotangent bundle T ∗N

over a smooth manifold N carries a canonical symplectic form ω0 = −dλ, where

λ =
∑
pidqi in canonical coordinates (q, p).

The R-disc bundles

T ∗
RN = {(q, p) ∈ T ∗N | |p| ≤ R}

over a closed Riemannian manifold N and T ∗N =
⋃

k∈N T ∗
kN are examples of

exact convex symplectic manifolds. A larger class of examples is

2. Stein manifolds. A Stein manifold is a triple (V, J, f) where (V, J) is an

open complex manifold and f : V → R is a smooth function which is exhausting

and J-convex. “Exhausting” means that f is bounded from below and proper,

and “J-convex” means that the 2-form

ωf = −d(df ◦ J)

is a J-positive symplectic form, i.e., ωf (v, Jv) > 0 for all v ∈ TV \ {0}. We

denote by gf(·, ·) = ωf (·, J ·) the induced Kähler metric on V , and by ∇f the

gradient vector field of f with respect to gf . We do not assume that ∇f is

complete; in particular, (V, ωf ) can have finite volume. In any case,

(1) L∇fωf = dι∇fωf = −d(gf(∇f, J ·)) = −d(df ◦ J) = ωf .

A Stein domain in (V, J, f) is a subset VR = {x ∈ V | f(x) ≤ R} for a regular

value R ∈ R. In view of (1), every Stein domain is an exact compact convex

symplectic manifold, and so every Stein manifold is an exact convex symplectic

manifold. We refer the reader to [12, 13, 14] for foundations of the symplectic

theory of Stein manifolds.

3. (i) Let N be a closed oriented surface equipped with a Riemannian metric

of constant curvature −1, and let σ be the area form on N . We endow the

cotangent bundle π: T ∗N → N with the twisted symplectic form ωσ = ω0−π∗σ.

It is shown in [45] that ωσ is exact on M = T ∗N \N and that M carries a vector

field X such that LXωσ = ωσ and such that X is everywhere transverse to ∂Mi,

pointing outwards, for each

Mi = {(q, p) ∈ T ∗N | 1/i ≤ |p| ≤ i}, i ≥ 2.
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Since H3(Mi) = Z, the manifolds Mi, i ≥ 2, are exact compact convex sym-

plectic manifolds which are not Stein domains, and M =
⋃

i≥2Mi is an exact

convex symplectic manifold which is not Stein. Smoothing the boundaries of

k-fold products ×kMi, i ≥ 2, we obtain such examples in dimension 4k for all

k ≥ 1.

(ii) Symplectically blowing up a Stein manifold of dimension at least 4 at

finitely many points we obtain a convex symplectic manifold which is not weakly

exact.

4. A product of convex symplectic manifolds does not need to be convex. Let

N be a closed orientable surface different from the torus, and let σ be a 2-form

on N . As we shall see in Lemma 12.6, the cotangent bundle T ∗N endowed

with the symplectic form ωσ = ω0 − π∗σ is convex. For homological reasons,

the product of (T ∗N,ωσ) with the convex symplectic manifold (T ∗S1, ω0) is,

however, convex only if σ is exact. We shall be confronted with such non-convex

manifolds in our search for closed trajectories of magnetic flows on surfaces. We

shall therefore develop our tools for symplectic manifolds which away from a

compact subset look like a product of convex symplectic manifolds.

Throughout we identify S1 = R/Z. Given any symplectic manifold (M,ω),

we denote by Hc(M) the set of C2-smooth functions S1×M → R whose support

is compact and contained in S1 × (M \ ∂M). The Hamiltonian vector field of

H ∈ Hc(M) defined by

ω(XHt
, ·) = dHt(·)

generates a flow ϕt
H . The set of time-1-maps ϕH = ϕ1

H forms the group

Hamc(M,ω) := {ϕH | H ∈ Hc(M)}

of C1-smooth compactly supported Hamiltonian diffeomorphisms of (M,ω).

Many of our results will apply to those Hamiltonian diffeomorphisms whose

support can be displaced from itself. We thus make the following definition.

Definition: A compact subset A of a symplectic manifold (M,ω) is displace-

able if there exists ϕ ∈ Hamc(M,ω) such that ϕ(A) ∩A = ∅.

Example: Every compact subset of a symplectic manifold of the form

(M ×R2, ω × ω0)

is displaceable.
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Our main tools to study Hamiltonian systems on convex symplectic mani-

folds will be the Piunikhin–Salamon–Schwarz isomorphism and a spectral met-

ric derived from it. Before explaining these tools, we describe their applications.

While some applications recover or generalize well-known results, many are new;

all of them, however, are straightforward consequences of the main tools. In this

introduction we give samples of our applications, and we refer to Sections 9 to

13 for stronger results.

1. A lower bound for the slow length growth. Consider a weakly

exact symplectic manifold (M,ω). For H ∈ Hc(M) the set of contractible

1-periodic orbits of ϕt
H is denoted by PH , and the symplectic action AH(x) of

x ∈ PH is defined by

(2) AH(x) = −
∫

D2

x̄∗ω −
∫ 1

0

H(t, x(t))dt

where x̄: D2 → M is a smooth extension of x to the unit disc. Since

[ω]|π2(M) = 0, the integral
∫

D2 x̄
∗ω does not depend on the choice of x̄. The

following result has been proved by Schwarz [66], in the context of closed weakly

exact symplectic manifolds (M,ω) whose first Chern class vanishes on π2(M).

Theorem 1: Assume that (M,ω) is a weakly exact convex symplectic manifold.

Then for every Hamiltonian function H ∈ Hc(M) generating a non-identical

Hamiltonian diffeomorphism ϕH ∈ Hamc(M,ω) there exists x ∈ PH such that

AH(x) 6= 0.

Theorem 1 is used in [24] to give a uniform lower bound for the slow length

growth of Hamiltonian diffeomorphisms of exact convex symplectic manifolds

(M,dλ). Fix a Riemannian metric g on such a manifold and denote by Σ the

set of smooth embeddings σ: [0, 1] → M . We define the slow length growth

s(ϕ) ∈ [0,∞] of a Hamiltonian diffeomorphism ϕ ∈ Hamc(M,ω) by

s(ϕ) = sup
σ∈Σ

lim inf
n→∞

log lengthg(ϕ
n(σ))

logn
.

Notice that s(ϕ) does not depend on the choice of g. We refer to [24] for

motivations to consider this invariant. Following an idea of Polterovich [60], we

use Theorem 1 in [24] to show

Corollary 1: Assume that (M,dλ) is an exact convex symplectic manifold.

Then s(ϕ) ≥ 1 for any ϕ ∈ Hamc(M,dλ) \ {id}.
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2. Infinitely many periodic points of Hamiltonian diffeomorphisms.

We consider once more a weakly exact convex symplectic manifold (M,ω). A

periodic point of ϕH ∈ Hamc(M,ω) is a point x ∈ M such that ϕk
H(x) = x

for some k ∈ N. We say that a periodic point x is trivial if ϕt
H(x) = x and

Ht(x) = 0 for all t ∈ R. Since H ∈ Hc(M), ϕH has many trivial periodic

points. The support suppϕH of a Hamiltonian diffeomorphism ϕH is defined

as
⋃

t∈[0,1] suppϕt
H . It has been proved by Schwarz [66], in the context of closed

weakly exact symplectic manifolds that if suppϕH is displaceable, then ϕH has

infinitely many non-trivial geometrically distinct periodic points. We shall prove

an analogous result in our situation.

Theorem 2: Consider a weakly exact convex symplectic manifold (M,ω). If

the support of ϕH ∈ Hamc(M,ω) \ {id} is displaceable, then ϕH has infinitely

many non-trivial geometrically distinct periodic points corresponding to con-

tractible periodic orbits.

Theorem 2 covers Proposition 4.13 (2) of [67] stating that any non-identical

compactly supported Hamiltonian diffeomorphism of (R2n, ω0) has infinitely

many non-trivial geometrically distinct periodic points, see also Theorem 11 in

Chapter 5 of [38]. In fact, this is true for all subcritical Stein manifolds, which

we are now going to define.

Example (Subcritical Stein manifolds): Let (V, J, f) be a Stein manifold. If

f : V → R is a Morse-function, then indexx(f) ≤ (1/2) dimR V for all critical

points x of f . A Stein manifold (V, J, f) is called subcritical if f is Morse and

indexx(f) < (1/2) dimR V for all critical points x. The simplest example of a

subcritical Stein manifold is Cn endowed with its standard complex structure

J and the J-convex function f(z1, . . . , zn) = |z1|2 + · · · + |zn|2.

It has been recently shown by Cieliebak [3], that every subcritical Stein mani-

fold is symplectomorphic to the product of a Stein manifold with (R2, ω0), and

so every compact subset of a subcritical Stein manifold is displaceable. We shall

not use this difficult result but will combine Theorem 2 with a result from [1]

to conclude

Corollary 2: Any compactly supported non-identical Hamiltonian diffeomor-

phism of a subcritical Stein manifold has infinitely many non-trivial geometri-

cally distinct periodic points corresponding to contractible periodic orbits.
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3. The Weinstein conjecture. Another immediate application of our

methods is a proof of the Weinstein conjecture for a large class of hypersur-

faces of contact type. We recall the following

Definition: A C2-smooth compact hypersurface S without boundary of a sym-

plectic manifold (M,ω) is called of contact type if there exists a Liouville

vector field X which is defined in a neighbourhood of S and everywhere is

transverse to S. A closed characteristic on S is an embedded circle in S all

of whose tangent lines belong to the distinguished line bundle

LS = {(x, ξ) ∈ TS | ω(ξ, η) = 0 for all η ∈ TxS}.

Theorem 3: Consider a weakly exact convex symplectic manifold (M,ω), and

let S ⊂ M \ ∂M be a displaceable C2-smooth hypersurface of contact type.

Then S carries a closed characteristic which is contractible in M .

Theorem 3 implies a result first proved by Viterbo [68].

Corollary 3: Any C2-smooth hypersurface of contact type in a subcriti-

cal Stein manifold (V, J, f) carries a closed characteristic which is contractible

in V .

We shall also obtain new existence results for closed characteristics near a

given hypersurface. Roughly speaking, our methods allow to generalize the re-

sults which can be derived from the Hofer–Zehnder capacity for hypersurfaces inR2n to displaceable hypersurfaces in weakly exact convex symplectic manifolds;

in addition, the closed characteristics found are contractible, and their reduced

actions are bounded by twice the displacement energy of the supporting hyper-

surface. We refer to Section 11 for the precise results.

4. Closed trajectories of a charge in a magnetic field. Consider a

Riemannian manifold (N, g) of dimension at least 2. The motion of a unit charge

on (N, g) subject to a magnetic field derived from a potential A: N → TN can

be described as the Hamiltonian flow of the Hamiltonian (p, q) 7→ (1/2)|p− α|2
on (T ∗N,ω0) where α is the 1-form g-dual to A and where again ω0 = −dλ
and λ =

∑
i pidqi. The fiberwise shift (q, p) 7→ (q, p − α(q)) conjugates this

Hamiltonian system with the Hamiltonian system

(3) H : (T ∗N,ωσ) → R, H(q, p) = (1/2)|p|2,

where σ = dα, and where the twisted symplectic form ωσ is given by

ωσ = ω0 − π∗σ = −d(λ + π∗α). The system (3) is a model for various other

problems in classical mechanics and theoretical physics, see [49, 40].
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A trajectory of a charge on (N, g) in the magnetic field σ has constant speed,

and closed trajectories γ on N of speed
√

2c > 0 correspond to closed orbits

of (3) on the energy level Ec := {H = c}. An old problem in Hamiltonian

mechanics asks for closed orbits on a given energy level Ec, see [26]. We denote

by P◦(Ec) the set of closed orbits on Ec which are contractible in T ∗N ; notice

that P◦(Ec) is the set of closed orbits on Ec which project to contractible closed

trajectories on N , and that if dimN ≥ 3, the orbits in P◦(Ec) are contractible

in Ec itself.

Theorem 4.A: Consider a closed manifold N endowed with a C2-smooth

Riemannian metric g and an exact 2-form σ which does not vanish identically.

There exists d > 0 such that P◦(Ec) 6= ∅ for almost all c ∈ ]0, d[.

“Almost all” refers to the Lebesgue measure on R. The number d > 0 has a

geometric meaning: If the Euler characteristic χ(N) vanishes, d is the supremum

of the real numbers c for which the sublevel set

Hc = {(q, p) ∈ T ∗N | H(q, p) = (1/2)|p|2 ≤ c}

is displaceable in (T ∗N,ωσ), and if χ(N) does not vanish, d is defined via stabi-

lizing (3) by the Hamiltonian system (T ∗S1, dx ∧ dy) → R, (x, y) 7→ (1/2)|y|2,
see Section 12 for details. Theorem 4.A generalizes a result of Polterovich [59]

and Macarini [45], who proved that P◦(Ec) 6= ∅ for a sequence c→ 0.

If the magnetic field on (N, g) cannot be derived from a potential, the motion

of a unit charge in this field can still be described by (3), where now σ is a closed

but not exact 2-form on N , see [26] and [49, 40] for further significance of such

Hamiltonian systems. In this introduction we consider only the case that N is

2-dimensional. Since H2(N ;R) = 0 if N is not orientable, we can assume that

N is orientable.

Theorem 4.B: Assume that N is a closed orientable surface of genus at least

1 endowed with a C2-smooth Riemannian metric g and a closed 2-form σ 6= 0.

(i) There exists d > 0 such that P◦(Ec) 6= ∅ for almost all c ∈ ]0, d[.

(ii) If N is a torus and σ is not exact, then P◦(Ec) 6= ∅ for almost all c > 0.

The number d > 0 in Theorem 4.B(i) has the same geometric meaning as the

number d = d(g, σ) in Theorem 4.A. Theorem 4.B(i) was proved for symplectic

magnetic fields by Arnold and Ginzburg for all sufficiently low energy levels

[26], and (ii) recovers a result of Lu [44]. We refer to Section 12.3 for a result

containing Theorems 4.A and 4.B as special cases. While the existence problem

for closed trajectories of a charge in a magnetic field has been studied for about
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twenty years, see [26], the last five years have brought a considerable progress

in this problem, [6, 9, 7, 10, 29, 30, 31, 39, 44, 45, 54, 59, 63]. We refer to

Section 12.4 in [23] for the state of the art in March 2003, and to [63] for the

state of the art in December 2004.

5. Lagrangian intersections. Our methods will provide a concise proof

of a Lagrangian intersection result covering some well-known as well as some

new cases.

Theorem 5: Consider a weakly exact convex symplectic manifold (M,ω), and

let L ⊂M \ ∂M be a closed Lagrangian submanifold such that

(i) the injection L ⊂M induces an injection π1(L) ⊂ π1(M);

(ii) L admits a Riemannian metric none of whose closed geodesics is con-

tractible.

Then L is not displaceable.

Note that the conclusion of Theorem 5 does not hold for a small circle L

in a disc D2, showing that condition (i) cannot be omitted. According to

Gromov’s theorem [33, 2.3.B′
3], the conclusion of Theorem 5 holds for any

closed Lagrangian submanifold L of a geometrically bounded symplectic mani-

fold (M,ω) for which [ω]|π2(M,L) = 0. For two further results in this direction

we refer to Remark 13.2.

The spectral metric. We shall derive the above results from a biinvariant

spectral metric on the group Hamc(M,ω) of compactly supported Hamiltonian

diffeomorphisms of a weakly exact compact convex symplectic manifold (M,ω).

We recall that a symplectomorphism ϑ of (M,ω) is a diffeomorphism of M such

that ϑ∗ω = ω. We denote by Sympc(M,ω) the group of symplectomorphisms

of (M,ω) whose support lies in M \ ∂M . We also recall that for any symplectic

manifold (M,ω), Hofer’s biinvariant metric dH on Hamc(M,ω) is defined by

dH(ϕ, ψ) = dH(ϕψ−1, id), dH(ϕ, id) = inf{‖H‖ | ϕ = ϕH},

where

(4) ‖H‖ =

∫ 1

0

(
sup
x∈M

H(t, x) − inf
x∈M

H(t, x)
)
dt.

It is shown in [42] that dH is indeed a metric.
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Theorem 6: Assume that (M,ω) is a weakly exact compact convex symplectic

manifold. There exists a function γ: Hamc(M,ω) → [0,∞[ such that

(i) γ(ϕ) = 0 if and only if ϕ = id;

(ii) γ(ϕψ) ≤ γ(ϕ) + γ(ψ);

(iii) γ(ϑϕϑ−1) = γ(ϕ) for all ϑ ∈ Sympc(M,ω);

(iv) γ(ϕ) = γ(ϕ−1);

(v) γ(ϕ) ≤ dH(ϕ, id).

In other words, γ is a symmetric invariant norm on Hamc(M,ω). The metric

dγ defined by

dγ(ϕ, ψ) = γ(ϕψ−1)

is thus a biinvariant metric on Hamc(M,ω) such that dγ ≤ dH . While the Hofer

metric dH is a Finsler metric, the metric dγ is a spectral metric in the sense

that γ(ϕ) is the difference of two action values of ϕ. This property and the

property that γ(ϕH) ≤ 2γ(ψ) if ψ displaces the support of ϕH are crucial for

our applications. Biinvariant metrics on Hamc(M,ω) with these properties have

been constructed for (R2n, ω0) and for cotangent bundles over closed bases by

Viterbo [67], and for closed symplectic manifolds (M,ω) by Schwarz [66], in the

case that [ω] and c1 vanish on π2(M), and by Oh [51, 52], in general.

The main ingredient in the construction of the spectral metric dγ is the

Piunikhin–Salamon–Schwarz isomorphism (PSS isomorphism, for short) be-

tween the Floer homology and the Morse homology of a weakly exact compact

convex symplectic manifold. Floer homology for weakly exact closed symplec-

tic manifolds (M,ω) has been defined in Floer’s seminal work [15, 16, 17, 18].

It is already shown there that the Floer homology of (M,ω) is isomorphic to

the Morse homology of M and thus to the ordinary homology of M by con-

sidering time independent Hamiltonian functions. An alternative construction

of this isomorphism is described in [57]; it is called the PSS isomorphism. In

the following three sections we establish the PSS isomorphism for weakly ex-

act compact convex symplectic manifolds (M,ω). In Sections 5 to 7 we follow

Schwarz [66], and use our PSS isomorphism to construct the spectral metric dγ

on the group Hamc(M,ω). In Section 8 it is shown that the π1-sensitive Hofer–

Zehnder capacity is bounded from above by twice the displacement energy. The

last five sections contain our applications.

Note added in June 2005: This work was finished in March 2003. Meanwhile,

some of our applications were recovered or improved by further investigating the

tools developed here [28, 22], and by combining ideas of this work with methods
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from Hofer geometry [63]. Moreover, exciting progress in the Morse theory for

the free time action functional for convex Lagrangian systems, combined with

Aubry–Mather theory, led to new existence results for closed trajectories of a

charge in a magnetic field, [7, 10, 53, 54], which overlap with our results.

Acknowledgements: We cordially thank Viktor Ginzburg for introducing

us to the symplectic geometry of magnetic flows. We also thank Yuri Chekanov,

Kai Cieliebak, Ely Kerman, Urs Lang, Leonid Polterovich, Dietmar Salamon,

Matthias Schwarz, Kris Wysocki and Edi Zehnder for valuable discussions.

This work was done during the second authors stay at FIM of ETH Zürich in

the winter term 2002/2003. He wishes to thank FIM for its kind hospitality.

2. Convexity

In this section we follow Viterbo, [68], and prove a Maximum Principle for a

perturbed Cauchy Riemann equation on a suitable completion of a compact

convex symplectic manifold. It will be a main ingredient in the construction of

Floer homology, of the PSS isomorphism, and of the spectral metric for weakly

exact convex symplectic manifolds given in the subsequent sections.

We consider a compact convex 2n-dimensional symplectic manifold (M,ω).

Choose a smooth vector field X on M which points outwards along ∂M and

is such that LXω = dιXω = ω near ∂M . For the 1-form α := (ιXω)|∂M we

then have dα = ω|∂M and α∧ (dα)n−1 is a volume form inducing the boundary

orientation of ∂M . Using X we can symplectically identify a neighbourhood of

∂M with

(∂M × (−2ǫ, 0], d(erα))

for some ǫ > 0. Here, we used coordinates (x, r) on ∂M × (−2ǫ, 0], and in

these coordinates, X(x, r) = ∂/∂r on ∂M × (−2ǫ, 0]. We can thus view M as a

compact subset of the non-compact symplectic manifold (M̂, ω̂) defined as

M̂ = M ∪∂M×{0} ∂M × [0,∞),

ω̂ =

{
ω on M ,
d(erα) on ∂M × (−2ǫ,∞),
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M

∂M

−2ǫ 0
r

RC

Figure 1. The completion M̂ of M .

see Figure 1, and X smoothly extends to M̂ by

X̂(x, r) := ∂/∂r, (x, r) ∈ ∂M × (−2ǫ,∞).

We denote the open “proboscis” ∂M × (−ǫ,∞) by Pǫ. Let ϕt be the flow of X̂.

Then ϕr(x, 0) = (x, r) for (x, r) ∈ Pǫ.

We recall that an almost complex structure Ĵ on M̂ is called ω̂-compatible

if

〈·, ·〉 ≡ gĴ(·, ·) := ω̂(·, Ĵ ·)
defines a Riemannian metric on M̂ . Following [2] we choose an ω̂-compatible

almost complex structure Ĵ on M̂ such that

ω̂(X̂(x), Ĵ(x)v) = 0, x ∈ ∂M, v ∈ Tx∂M,(5)

ω̂(X̂(x), Ĵ(x)X̂(x)) = 1, x ∈ ∂M,(6)

dϕr(x, 0)Ĵ(x, 0) = Ĵ(x, r)dϕr(x, 0), (x, r) ∈ Pǫ.(7)

We define f ∈ C∞(Pǫ) by

(8) f(x, r) := er, (x, r) ∈ Pǫ.

Since LX̂ ω̂ = ω̂ on ∂M × (−2ǫ,∞), we have ϕ∗
r ω̂ = erω̂ on Pǫ for all r > −ǫ.

This, (6) and (7) imply that

(9)
〈
X̂(p), X̂(p)

〉
= f(p), p ∈ Pǫ.

The identities (9) and (5) they imply that

(10) ∇f(p) = X̂(p), p ∈ Pǫ,

where ∇ is the gradient with respect to the metric 〈·, ·〉. We shall need the

following theorem of Viterbo, [68].
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Theorem 2.1: For h ∈ C∞(R) define H ∈ C∞(Pǫ) by

H(p) = h(f(p)), p ∈ Pǫ.

Let Ω be a domain in C and let Ĵ ∈ Γ(M̂ × Ω,End(TM̂)) be a smooth section

such that Ĵz := Ĵ(·, z) is an ω̂-compatible almost complex structure satisfying

(5), (6) and (7). If u ∈ C∞(Ω, Pǫ) is a solution of Floer’s equation

(11) ∂su(z) + Ĵ(u(z), z)∂tu(z) = ∇H(u(z)), z = s+ it ∈ Ω,

then

(12) ∆(f(u)) = 〈∂su, ∂su〉 + h′′(f(u)) · ∂s(f(u)) · f(u).

Proof: We abbreviate dc(f(u)) := d(f(u)) ◦ i = ∂t(f(u))ds− ∂s(f(u))dt. Then

(13) −ddc(f(u)) = ∆(f(u))ds ∧ dt.

In view of the identities (9), (10) and (11) we can compute

−dc(f(u)) = − (df(u)∂tu)ds+ (df(u)∂su)dt

= − (df(u)(Ĵ(u, z)∂tu))dt− (df(u)(Ĵ(u, z)∂su))ds

+ (df(u)(∂su+ Ĵ(u, z)∂tu))dt+ (df(u)(Ĵ(u, z)∂su− ∂tu))ds

= ω̂(X̂(u), ∂tu)dt+ ω̂(X̂(u), ∂su)ds(14)

+ 〈∇f(u),∇H(u)〉dt+ 〈∇f(u), Ĵ(u, z)∇H(u)〉ds
= u∗ιX̂ ω̂ + 〈X̂(u), h′(f(u))X̂(u)〉dt+ 0

= u∗ιX̂ ω̂ + h′(f(u))f(u)dt.

Using dιX̂ ω̂ = LX̂ ω̂ = ω̂ and again (11), we find

du∗ιX̂ ω̂ = u∗ω̂ = ω̂(∂su, Ĵ(u, z)∂su− Ĵ(u, z)∇H(u))ds ∧ dt
= (〈∂su, ∂su〉 − dH(u)∂su)ds ∧ dt
= (〈∂su, ∂su〉 − ∂s(h(f(u))))ds ∧ dt.

Together with (14) it follows that

−ddc(f(u)) = (〈∂su, ∂su〉 − ∂s(h(f(u))) + ∂s(h
′(f(u))f(u)))ds ∧ dt

= (〈∂su, ∂su〉 + h′′(f(u)) · ∂s(f(u)) · f(u))ds ∧ dt,

and so Theorem 2.1 follows in view of (13).
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Remark 2.2 (Time-dependent Hamiltonian): Repeating the calculations in the

proof of Theorem 2.1, one shows the following more general result. Let h ∈
C∞(R2,R) and define H ∈ C∞(Pǫ ×R) by

H(p, s) = h(f(p), s), p ∈ Pǫ, s ∈ R.
If Ω is a domain in C and if u ∈ C∞(Ω, Pǫ) is a solution of the time-dependent

Floer equation

(15) ∂su(z) + Ĵ(u(z), z)∂tu(z) = ∇H(u(z), s), z = s+ it ∈ Ω,

then

∆(f(u)) = 〈∂su, ∂su〉 + ∂2
1h(f(u), s) · ∂sf(u) · f(u) + ∂1∂2h(f(u), s) · f(u).

In the following corollary we continue the notation of Theorem 2.1.

Corollary 2.3 (Maximum Principle): Assume that u ∈ C∞(Ω, Pǫ) and that

one of the following conditions holds.

(i) u is a solution of Floer’s equation (11);

(ii) u is a solution of the time-dependent Floer equation (15) and ∂1∂2h ≥ 0.

If f ◦ u attains its maximum on Ω, then f ◦ u is constant.

Proof: Assume that u solves (11). We set

b(z) = −h′′(f(u(z))) · f(u(z)).

The operator L on C∞(Ω,R) defined by L(v) = ∆v + b(z)∂sv is uniformly

elliptic on relatively compact domains in Ω, and according to Theorem 2.1,

L(f ◦u) ≥ 0. If f ◦u attains its maximum on Ω, the strong Maximum Principle,

[25, Theorem 3.5], thus implies that f ◦ u is constant. The other claim follows

similarly from Remark 2.2 and the second part of [25, Theorem 3.5].

3. Floer homology

Floer homology was introduced by Floer for weakly exact closed symplectic

manifolds in [15, 16, 17, 18], and we refer to [61] for a general exposition. The

Floer chain complex of a Hamiltonian function is generated by the 1-periodic

orbits of its Hamiltonian flow, and the boundary operator is defined, roughly

speaking, by counting perturbed pseudo-holomorphic cylinders which converge

at both ends to generators of the chain complex. In the presence of a contact
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type boundary ∂M the Hamiltonian has to be chosen appropriately near ∂M

in order to insure that the Floer cylinders stay in the interior of M . Floer

homologies for open subsets of (R2n, ω0) and for weakly exact compact convex

symplectic manifolds have been constructed in [19, 4, 5, 68]. These Floer ho-

mologies depend on the behaviour of the Hamiltonians near ∂M . In this section

we define a Floer homology for weakly exact compact convex symplectic mani-

folds via Hamiltonians which increase slowly near ∂M . This Floer homology

will be identified with the Morse homology of M via the PSS isomorphism in

the next section.

The Reeb vector field R of α = (ιXω)|∂M on ∂M is defined by

(16) ωx(v,R) = 0 and ωx(X,R) = 1, x ∈ ∂M, v ∈ Tx∂M.

By (5) and (6) we have R = ĴX |∂M . This and (10) imply that for h ∈
C∞(R) the Hamilton equation ẋ = XH(x) of H = h ◦ f : Pǫ → R defined

by ω(XH(x), ·) = dH(x) restricts on ∂M to

(17) ẋ(t) = −h′(1)R(x(t)).

Define κ ∈ (0,∞] by

κ := inf{c > 0 | ẋ(t) = −cR(x(t)) has a 1-periodic orbit}.

We denote by Ĥ the set of smooth functions Ĥ ∈ C∞(S1 × M̂) for which

there exists a function h ∈ C∞(R) such that 0 ≤ h′(ρ) < κ for all ρ ≥ 1 and

Ĥ |S1×∂M×[0,∞) = h ◦ f ; with this choice of h the restriction of the flow ϕt
Ĥ

of

Ĥ ∈ Ĥ to ∂M × [0,∞) has no 1-periodic solutions. We introduce the set

H := {H ∈ C∞(S1 ×M)
∣∣ H = Ĥ |S1×M for some Ĥ ∈ Ĥ}

of admissible Hamiltonian functions on M . Moreover, we denote by Ĵ the

set of smooth sections Ĵ ∈ Γ(S1 × M̂,End(TM̂)) such that for every t ∈ S1

the section Ĵt := Ĵ(t, ·) is an ω̂-compatible almost complex structure which on

∂M × [0,∞) is independent of the t-variable and satisfies (5), (6) and (7); and

we introduce the set

J := {J ∈ Γ(S1 ×M,End(TM))
∣∣ J = Ĵ |S1×M for some Ĵ ∈ Ĵ }

of admissible almost complex structures on TM . A well-known argument

shows that the space Ĵ is connected, see [2, Remark 4.1.1]. Since the restriction

map Ĵ → J is continuous, J is also connected.
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For H ∈ H let PH be the set of contractible 1-periodic orbits of the Hamil-

tonian flow of H . By “generic” we shall mean “belonging to a countable inter-

section of sets which are open and dense in the strong Whitney C∞-topology”.

For generic H ∈ H for no x ∈ PH the value 1 is a Floquet multiplier of x, i.e.,

(18) det(id−dϕ1
H(x(0)) 6= 0.

Since M is compact, PH is then a finite set. An admissible H satisfying (18) for

all x ∈ PH is called regular, and the set of regular admissible Hamiltonians is

denoted by Hreg ⊂ H. For H ∈ Hreg we define CF (M ;H) to be the Z2-vector

space consisting of formal sums

ξ =
∑

x∈PH

ξxx, ξx ∈ Z2.

We assume first that the first Chern class c1 = c1(ω) ∈ H2(M ;Z) of the bun-

dle (TM, J) vanishes on π2(M). In this case, the Conley–Zehnder index µ(x)

of x ∈ PH is well-defined, see [62]. We normalize µ in such a way that for

C2-small time-independent Hamiltonians,

µ(x) = 2n− ind(x)

for each critical point x ∈ Crit(H); here, ind(x) is the Morse index of H at x.

The Conley–Zehnder index turns CF (M ;H) into the graded Z2-vector space

CF∗(M ;H). For x, y ∈ PH let M(x, y) be the moduli space of Floer connecting

orbits from x to y, i.e., M(x, y) is the set of solutions u ∈ C∞(R × S1,M) of

the problem {
∂su+ Jt(u)(∂tu−XHt

(u)) = 0
lim

s→−∞
u(s, t) = x(t), lim

s→∞
u(s, t) = y(t).

For later use we notice that by a standard computation,

(20)

∫R×S1

|∂su|2dsdt = AH(x) −AH(y) ≥ 0, u ∈ M(x, y).

For generic J ∈ J the moduli spaces M(x, y) are smooth manifolds of dimension

µ(x) − µ(y) for all x, y ∈ PH , see [62]. Such a J is called H-regular, and a

pair (H, J) is called regular if H is regular and J is H-regular. The groupR acts on M(x, y) by translation, u(s, t) 7→ u(s + τ, t) for τ ∈ R. Since [ω]

vanishes on π2(M), there is no bubbling off of pseudo-holomorphic spheres. It

thus follows from Corollary 2.3(i) and the usual compactness arguments that if
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µ(x) − µ(y) = 1, then the quotient M(x, y)/R is a compact zero-dimensional

manifold and hence a finite set. Set

n(x, y) := #{M(x, y)/R} mod 2.

For k ∈ N we define the Floer boundary operator

∂k: CFk(M ;H) → CFk−1(M ;H)

as the linear extension of

∂kx =
∑

y∈PH
µ(y)=k−1

n(x, y)y

where x ∈ PH and µ(x) = k. Proceeding as in [16, 64] one shows that ∂2 = 0.

The complex (CF∗(M ;H), ∂∗) is called the Floer chain complex. Its homology

HFk(M ;H, J) :=
ker∂k

im ∂k+1

is a graded Z2-vector space which does not depend on the choice of a regular

pair (H, J), see again [16, 64], and so we can define the Floer homologyHF∗(M)

by

HF∗(M) := HF∗(M ;H, J)

for any regular pair (H, J).

In case that c1(ω) does not vanish, the moduli spaces M(x, y) for x, y ∈ PH

are still smooth manifolds for generic J ∈ J , but now may contain connected

components of different dimensions. We denote by M1(x, y) the union of the

1-dimensional connected components of M(x, y). Since [ω] vanishes on π2(M),

the space M1(x, y)/R is still compact, and we can define

n(x, y) := #(M1(x, y)/R) mod 2.

Proceeding as above we define an ungraded Floer homology whose chain complex

is generated, again, by the set PH and whose boundary operator is the linear

extension of

∂x =
∑

y∈PH

n(x, y)y

where x ∈ PH .
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Products. As we pointed out in Example 4 of the introduction, the product

of convex manifolds does not need to be convex. Nevertheless, the Floer ho-

mology of a product of weakly exact compact convex symplectic manifolds can

still be defined. In fact, Floer homology can be defined for yet a larger class

of compact symplectic manifolds with corners. We recall that an n-dimensional

manifold with corners is a space locally modeled on Rk × (R≥0)
n−k for variable

k ∈ {0, . . . , n}.

Definition 3.1: A compact symplectic manifold with corners (M,ω) is split-

convex if there exist compact convex symplectic manifolds (Mj , ωj), j =

1, . . . , k, and compact subsets K ⊂ M \ ∂M and K ′ ⊂ M1 × · · · × Mk such

that

(M \K,ω) = ((M1 × · · · ×Mk) \K ′, ω1 ⊕ · · · ⊕ ωk).

Consider a weakly exact compact split-convex symplectic manifold (M,ω),

and let (Mj , ωj), j = 1, . . . , k, be as in Definition 3.1. For notational conve-

nience, we assume that k = 2. We specify the set of admissible Hamiltonian

functions H ⊂ C∞(S1×M) and the set of admissible almost complex structures

J ⊂ Γ(S1 ×M,End(TM)) as follows. For i = 1, 2, let

M̂i = Mi ∪∂Mi×{0} ∂Mi × [0,∞)

be the completion of Mi endowed with the symplectic form ω̂i as in Section 2,

and let Ĥi ⊂ C∞(S1 × M̂i) and Ĵi ⊂ Γ(S1 × M̂i,End(TM̂i)) be the set of

admissible functions and admissible almost complex structures on M̂i. We define

the completion (M̂, ω̂) of (M,ω) as

M̂ = M ∪
(
(M̂1 × M̂2) \ (M1 ×M2)

)
,

ω̂ =

{
ω on M ,

ω̂1 ⊕ ω̂2 on (M̂1 × M̂2) \ (M1 ×M2).

We first define the set of admissible functions Ĥ ⊂ C∞(S1 × M̂) as the set of

functions Ĥ ∈ C∞(S1 × M̂) for which there exist Ĥi ∈ Ĥi, i = 1, 2, such that

Ĥ |(M̂1×M̂2)\(M1×M2)
= (Ĥ1 + Ĥ2)

∣∣∣
(M̂1×M̂2)\(M1×M2)

;

and we then define the set H of admissible functions on M as the set of functions

H ∈ C∞(S1 ×M) for which there exists Ĥ ∈ Ĥ such that

H = Ĥ|M .
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Similarly, we first define the set of admissible almost complex structures Ĵ as

the set of Ĵ ∈ Γ(S1 × M̂,End(TM̂)) for which there exist admissible almost

complex structures Ĵi ∈ Ĵi, i = 1, 2, such that

Ĵ |
(M̂1×M̂2)\(M1×M2)

= (Ĵ1 × Ĵ2)
∣∣∣
(M̂1×M̂2)\(M1×M2)

;

and we then define the set J of admissible almost complex structures on M as

the set of almost complex structures J ∈ Γ(S1 ×M,End(TM)) for which there

exists Ĵ ∈ Ĵ such that

J = Ĵ |M .

Using the Maximum Principle Corollary 2.3 factorwise we define the Floer ho-

mology HF (M) as above. If c1(ω) vanishes on π2(M), then HF (M) is graded

by the Conley–Zehnder index.

4. The Piunikhin–Salamon–Schwarz isomorphism

Again, we assume that (M,ω) is a weakly exact compact convex symplectic

manifold. We first assume that c1(ω) vanishes on π2(M). Let F ∈ C∞(M) be

an admissible Morse function, i.e., F is a smooth Morse function for which

there exists F̂ ∈ C∞(M̂) such that

F̂ |M = F and F̂ (x, r) = e−r, x ∈ ∂M, r ∈ [0,∞).

The Morse chain complex CM∗(M ;F ) of F is the Z2-vector space generated

by the critical points of F and graded by the Morse index, and the boundary

operator on CM∗(M ;F ) is defined by counting flow lines of the negative gradient

flow of F with respect to a generic Riemannian metric between critical points

of index difference 1. The homology

HM∗(M) = HM∗(M ;F )

of CM∗(M ;F ) does not depend on the choice of F , cf. [64]. The Piunikhin–

Salamon–Schwarz maps between the Morse chain complex and the Floer

chain complex will induce explicit isomorphisms between the Morse homology

HM∗(M) of M and the Floer homology HF∗(M) of (M,ω).

Choose H ∈ Hreg and an admissible Morse function F . We first construct

the Piunikhin–Salamon–Schwarz map

φ: CM∗(M ;F ) → CF∗(M ;H).
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By the definition of H, there exists Ĥ ∈ Ĥ such that H = Ĥ |S1×M and

Ĥ |S1×∂M×[0,∞) = h ◦ f for some h ∈ C∞(R) satisfying 0 ≤ h′(1) < κ. For

s ∈ R choose a smooth family hs ∈ C∞(R) such that

(h1) hs = 0, s ≤ 0,

(h2) ∂sh
′
s ≥ 0, s ∈ R,

(h3) hs = h, s ≥ 1,

and then choose a smooth family Ĥs ∈ C∞(S1 × M̂) such that

(H1) Ĥs = 0, s ≤ 0,

(H2) Ĥs|S1×∂M×[0,∞) = hs ◦ f, 0 ≤ s ≤ 1,

(H3) Ĥs = Ĥ, s ≥ 1.

Finally we define the smooth family Hs ∈ C∞(S1 ×M) by

Hs := Ĥs|S1×M .

Theorem 4.1: Let J− be an H-regular admissible almost complex structure

and J+ be an arbitrary admissible almost complex structure. Consider

the space J (J−, J+) of families of admissible almost complex structures

Js ∈ Γ(S1 ×M,End(TM)) for which there exists s0 = s0(Ĵs) > 0 such that

Js = J− for s ≤ −s0 and Js = J+ for s ≥ s0. For a generic element

Js ∈ J (J−, J+) the moduli space of the problem

(21)





u ∈ C∞(R× S1,M),
∂su+ Js,t(u)(∂tu−XHs,t

(u)) = 0,∫R×S1 |∂su|2 <∞,

is a smooth finite dimensional manifold. Here, Js,t = Js(t, ·) and Hs,t = Hs(t, ·).

Proof: We denote the moduli space of solutions of problem (21) by M0. Choose

Ĥs ∈ Ĥ and Ĵs ∈ Ĵ satisfying Ĥs|M = Hs and Ĵs|M = Js. Instead of M0 we

first consider the moduli space M of solutions of the problem

(22)





u ∈ C∞(R× S1, M̂),

∂su+ Ĵs,t(u)(∂tu−XĤs,t
(u)) = 0,

∫R×S1 |∂su|2 <∞.

The moduli space M0 consists of those u ∈ M whose image is entirely contained

in M . We shall first prove that for generic choice of Ĵs, the moduli space M
is a smooth finite dimensional manifold. We shall then use convexity to prove

that the image of each u ∈ M is entirely contained in M and hence M0 = M
is a smooth finite dimensional manifold.
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We interpret solutions of (22) as the zero set of a smooth section from a

Banach manifold B to a Banach bundle E over B. To define B we first introduce

certain weighted Sobolev norms. Choose a smooth cutoff function β ∈ C∞(R)

such that β(s) = 0 for s < 0 and β(s) = 1 for s > 1. Choose δ > 0 and define

γδ ∈ C∞(R) by

γδ(s) := eδβ(s)s.

Let Ω be a domain in the cylinder R × S1. For 1 ≤ p ≤ ∞ and k ∈ N0 we

consider the standard Sobolev space W k,p(Ω) as defined, e.g., in Appendix B.1

of [48], and define the ‖ · ‖k,p,δ-norm of v ∈W k,p(Ω) by

‖v‖k,p,δ :=
∑

i+j≤k

‖γδ · ∂i
s∂

j
t v‖p.

We introduce weighted Sobolev spaces

W k,p
δ (Ω) := {v ∈W k,p(Ω) | ‖v‖k,p,δ <∞}

= {v ∈W k,p(Ω) | γδv ∈W k,p(Ω)},

and we abbreviate

Lp
δ(Ω) := W 0,p

δ (Ω).

The space W k,p
loc (Ω) is defined as the space (of equivalence classes) of locally

p-integrable functions v: Ω → R whose restrictions to all bounded open subsets

U of Ω are in W k,p(U).

For kp > 2, the Sobolev spaces W k,p(Ω, E), W k,p
δ (Ω, E) and W k,p

loc (Ω, X) of

maps from Ω to a vector bundle E over a closed manifold or to a manifold X can

be defined in terms of W k,p(Ω), W k,p
δ (Ω) and W k,p

loc (Ω) by using local coordinate

charts, see [48, Remark B.1.24].

Let p > 2 and fix a Riemannian metric g on TM̂ . The Banach manifold

B = B1,p
δ (M̂) consists of W 1,p

loc -maps u from the cylinder R × S1 to M̂ which

satisfy the conditions

(B1) There exists a point m ∈ M̂ , a real number T1 < 0, and

v1 ∈ W 1,p
δ ((−∞, T1) × S1, TmM̂)

such that

u(s, t) = expm(v1(s, t)), s < T1.

(B2) There exists x ∈ PH ⊂ C∞(S1, M̂), a real number T2 > 0, and v2 ∈
W 1,p

δ ((T2,∞) × S1, x∗TM̂) such that

u(s, t) = expx(t)(v2(s, t)), s > T2.
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Here, the exponential map is taken with respect to g. Since M̂ has no boundary,

B is a Banach manifold without boundary. Note that every solution of (22) lies

in B. Indeed, the finite energy assumption in (22) guarantees that solutions of

(22) converge exponentially fast at both ends, see [21, Section 3.7]. Let E be

the Banach bundle over B whose fibre over u ∈ B is given by

Eu := Lp
δ(u

∗TM).

We choose Ĵ−, Ĵ+ ∈ Ĵ such that J− = Ĵ−|M and J+ = Ĵ+|M . For each smooth

family Ĵs for which there exists an s0 > 0 such that Ĵs = Ĵ− for s ≤ −s0 and

Ĵs = Ĵ+ for s ≥ s0 we define the section F = FJs
: B → E by

F(u) := ∂su+ Ĵs,t(u)(∂tu−XĤs,t
(u)).

For small enough δ, the vertical differential DF is a Fredholm operator, see

for example [21, Section 4.3]. One can prove that for generic choice of Js the

section FJs
intersects the zero section transversally, see [20, Section 5] and

[21, Section 4.5]. Hence,

M ≡ MJs
:= F−1

Js
(0)

is a smooth finite dimensional manifold for generic Js.

It remains to show that M = M0, i.e., the image of every u ∈ M is con-

tained in M . The finite energy condition in (22) and (H1) imply by removable

singularities that m := lims→−∞ u(s, t) is a point in M̂ , and the finite energy

condition and (H3) implies that x(t) := lims→∞ u(s, t) is a 1-periodic orbit of

the Hamiltonian flow of Ĥ , see [61, Section 2.7]. By our choice of Ĥ we in fact

have x ∈ PH ⊂M . We claim that m is also contained in M . To see this, assume

that m ∈ M̂ \M . Define v: C→ M̂ by the conditions

v(e2π(s+it)) = u(s, t), v(0) = m.

Since every admissible almost complex structure J restricted to M̂ \M is inde-

pendent of the t-variable, v is a pseudo-holomorphic map in a neighbourhood of

0, which is not constant, since otherwise u were constant, contradicting x ⊂M

and m ∈ M̂ \M . It follows from Corollary 2.3(i) that f ◦v does not have a local

maximum at 0. In view of condition (h2) it follows from Corollary 2.3(ii) that

for every (s, t) ∈ R × S1 for which u(s, t) ∈ M̂ \M , the function f ◦ u, which

is well-defined in a neighbourhood of (s, t), does not have a local maximum at

(s, t). But then x cannot entirely lie in M . This contradiction proves m ∈ M .
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Now a similar reasoning as above, which uses again Corollary 2.3, shows that the

whole image of u lies in M . We have shown that M = M0, and so Theorem 4.1

is proved.

Define the evaluation map ev : M →M by

ev(u) := lim
s→−∞

u(s, t).

Combining the techniques in [61, Section 2.7] and [21, Appendix C.2] one sees

that for generic Js the evaluation map ev is transverse to every unstable manifold

of the Morse function F ∈ C∞(M). Denote by Crit(F ) the set of critical points

of F and by ind(c) the Morse index of c ∈ Crit(F ). Morse flow lines γ: R→M

are solutions of the ordinary differential equation

(23) γ̇(s) = −∇F (γ(s))

where the gradient is taken with respect to a generic metric g on M . For

generators c ∈ Crit(F ) ⊂ M of the Morse chain complex and x ∈ PH of the

Floer chain complex, let M(c, x) be the moduli space of pairs (γ, u) such that

γ: (−∞, 0] →M solves (23), u solves (21), and

lim
s→−∞

γ(s) = c, γ(0) = ev(u), lim
s→∞

u(s, t) = x(t),

cf. Figure 2.

R 2
R

c

γ

γ(0) = ev(u)
u x

Figure 2. An element of M(c, x).

If ind(c) = µ(x), then M(c, x) is a compact zero-dimensional manifold, see [57].

We can thus set

n(c, x) := #M(c, x) mod 2.

The Piunikhin–Salamon–Schwarz map φ: CM∗(M ;F ) → CF∗(M ;H) is defined

as the linear extension of

φ(c) =
∑

x∈PH
ind(c)=µ(x)

n(c, x)x, c ∈ Crit(F ).
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By the usual gluing and compactness arguments one proves that φ intertwines

the boundary operators of the Morse complex and the Floer complex and hence

induces a homomorphism

Φ: HM∗(M) → HF∗(M),

see [48, 65]. To prove that Φ is an isomorphism we construct its inverse. We first

define the Piunikhin–Salamon–Schwarz map ψ: CF∗(M ;H) → CM∗(M ;F ).

Let

U :=
⋃

c∈Crit(F )

W s
F (c)

be the union of the stable manifolds of F . Since F is admissible, the stable mani-

folds of the critical points of F are entirely contained in the interior of M , i.e.,

U ⊂M \ ∂M.

Choose an open neighbourhood V of U in M \ ∂M and a smooth family of

admissible Hamiltonian functions Hs for which there exists s0 > 0 such that

Hs = H if s ≤ −s0 and Hs|V = 0 if s ≥ s0.

Recall that the Hamiltonian functions Hs are restrictions of Hamiltonian func-

tions Ĥs ∈ Ĥ such that Ĥs|S1×∂M×[0,∞) = hs ◦ f , where hs ∈ C∞(R) are

such that 0 ≤ h′s(ρ) < κ for all ρ ≥ 1. We assume in addition that hs = h is

independent of the s-variable and that

h′(1) > 0.

Choose a smooth family Js ∈ J (J+, J−) of admissible almost complex struc-

tures. For x ∈ PH and c ∈ Crit(F ) let M(x, c) be the moduli space of pairs

(u, γ) such that u solves (21), γ: [0,∞) →M solves (23), and

lim
s→−∞

u(s, t) = x(t), lim
s→∞

u(s, t) = γ(0), lim
s→∞

γ(s) = c,

cf. Figure 3.
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c

γ

γ(0)

u
x

R

Figure 3. An element of M(x, c).

By our assumption on Ĥs it follows from Corollary 2.3 (i) that every solution of

problem (22) is entirely contained in M and hence solves problem (21). Arguing

as in the proof of Theorem 4.1 we can thus show that for generic choice of Js

the moduli space M(x, c) is a finite dimensional manifold of dimension

dimM(x, c) = µ(x) − ind(c).

In case that µ(x) = ind(c), the moduli space is compact, and we define

n(x, c) := #{M(x, c)} mod 2.

The Piunikhin–Salamon–Schwarz map ψ: CF∗(M ;H) → CM∗(M ;F ) is defined

as the linear extension of

ψ(x) =
∑

c∈Crit(F )
µ(x)=ind(c)

n(x, c)x, x ∈ PH .

Again, ψ intertwines the boundary operators in the Floer complex and the

Morse complex and hence induces a homomorphism

Ψ: HF∗(M) → HM∗(M).

One can prove that

Ψ ◦ Φ = id and Φ ◦ Ψ = id,

cf. [57], and so Φ and Ψ are isomorphisms, called the PSS isomorphisms.

If c1(ω) does not vanish on π2(M), we proceed in the same way and obtain

the PSS isomorphisms between the ungraded homologiesHM(M) and HF (M).

Products. Proceeding as above and applying the Maximum Principle Corol-

lary 2.3 factorwise we construct PSS isomorphisms also for weakly exact com-

pact split-convex symplectic manifolds.
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5. The selector c

Let (M,ω) be a weakly exact compact split-convex symplectic manifold. We do

not assume that c1(ω) vanishes on π2(M) and shall work with ungraded chain

complexes and homologies. For a regular admissible Hamiltonian H ∈ Hreg and

a ∈ R let CF a(M ;H) be the linear subspace of CF (M ;H) consisting of those

formal sums

ξ =
∑

x∈PH

ξxx, ξx ∈ Z2,

for which ξx = 0 if AH(x) > a. In view of (20), the Floer boundary operator ∂

preserves CF a(M ;H) and thus induces a boundary operator ∂a on the quotient

CF (M ;H)/CF a(M ;H). We denote the homology of the resulting complex

by HF a(M ;H). Since the projection CF (M ;H) → CF (M ;H)/CF a(M ;H)

intertwines ∂ and ∂a, it induces a map ja: HF (M ;H) → HF a(M ;H). Choose

a generic admissible Morse function F ∈ C∞(M) which attains its maximum in

only one point, say m. Let [max] ∈ HM(M) be the homology class represented

by m. Following [67], [50] and in particular [66] we define

(24) c(H) := inf{a ∈ R | ja(Φ([max])) = 0}

where Φ: HM(M) → HF (M ;H) is the PSS isomorphism. Using convexity and

the natural isomorphism HF (M ;H) ∼= HF (M ;K) for H,K ∈ Hreg one shows

as in [66, Section 2] that

(25) |c(H) − c(K)| ≤ ‖H −K‖ for all H,K ∈ Hreg

where ‖ · ‖ denotes the Hofer norm defined in (4). In particular, c is

C0-continuous on Hreg. Let Hc(M) be the set of C2-smooth functions

S1 ×M → R whose support is contained in S1 × (M \ ∂M), and let H∞
c (M) be

the set of C∞-smooth functions in Hc(M). Since Hreg is C∞-dense in H and

since H∞
c (M) is C2-dense in Hc(M), we can first C∞-continuously extend c to

a map H → R and then C2-continuously extend its restriction to H∞
c (M) to a

map Hc(M) → R which we still denote by c. By (25),

(26) |c(H) − c(K)| ≤ ‖H −K‖ for all H,K ∈ Hc(M).

For H ∈ H or H ∈ Hc(M) we denote by PH the set of contractible 1-periodic

orbits of ϕt
H and by ΣH the action spectrum

ΣH = {AH(x) | x ∈ PH}.

The following property of c is basic for the rest of the paper.
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Proposition 5.1: For every H ∈ Hc(M) it holds that c(H) ∈ ΣH .

Proof: For H ∈ Hreg it follows from definition (24) that c(H) ∈ ΣH . For

H ∈ Hc(M) we choose a sequence Hn, n ≥ 1, in Hreg converging to H in C2

and choose xn ∈ PHn
such that c(Hn) = AHn

(xn). Using that M is compact we

find a subsequence nj , j ≥ 1, such that xnj
(0) → x0 ∈M as j → ∞. Since the

Hamiltonians Hnj
converge to H in C2, it follows that x(t) := ϕt

H(x0) belongs

to PH , and together with (26),

c(H) = lim
j→∞

c(Hnj
) = lim

j→∞
AHnj

(xnj
) = AH(x).

Therefore, c(H) ∈ ΣH .

The set Hc(M) forms a group with multiplication and inverse given by

Ht3Kt = Ht +Kt((ϕ
t
Ht

)−1), H−
t = −Ht ◦ ϕt

Ht
, Ht,Kt ∈ Hc(M).

It is shown in [66] that c satisfies the triangle inequality

(27) c(H3K) ≤ c(H) + c(K), H,K ∈ Hc(M).

The proof of (27) uses the product structure on Floer homology given by the

pair of pants product, which is well-defined by convexity, and a sharp energy

estimate for the pair of pants.

In the remainder of this section we give an upper bound for c(H) and compute

c(H) for simple Hamiltonians.

5.1. An upper bound for c(H).

Proposition 5.2: Let (M,ω) be a weakly exact compact split-convex sym-

plectic manifold, and let H ∈ Hc(M). Then

(28) c(H) ≤ −
∫ 1

0

inf
x∈M

Ht(x)dt.

In particular, c(H) ≤ ‖H‖.

Proof: Since c is C2-continuous, it suffices to prove (28) for H ∈ Hreg. Let

Ĥ ∈ Ĥ be such that H = Ĥ |S1×M . We can choose the family Ĥs ∈ C∞(S1×M̂)

used in the construction of the PSS map φ: CM(M ;F ) → CF (M ;H) of the

form Ĥs = β(s)Ĥ where β: R→ [0, 1] is a smooth cut off function such that

(29) β(s) = 0, s ≤ 0; β′(s) ≥ 0, s ∈ R; β(s) = 1, s ≥ 1.
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In view of the construction of φ and the definition (24) of c(H) we find

x+ ∈ PH such that AH(x+) = c(H) and a solution u ∈ C∞(R × S1,M) of

the problem (21) such that lims→∞ u(s, t) = x+(t). Since the energy of u is

finite, there exists p ∈ M such that lims→−∞ u(s, t) = p. Using the Floer

equation in (21) we compute

0 ≤
∫ 1

0

∫ ∞

−∞
|∂su|2dsdt

= −
∫ 1

0

∫ ∞

−∞
〈∂su, Js,t(u)(∂tu−XHs,t

(u))〉dsdt

=

∫R×S1

u∗ω +

∫ 1

0

∫ ∞

−∞
ω(XHs,t

(u), ∂su)dsdt

=

∫R×S1

u∗ω +

∫ 1

0

∫ ∞

−∞
d(Hs,t(u))∂su dsdt

=

∫R×S1

u∗ω +

∫ 1

0

∫ ∞

−∞

d

ds
(Hs,t(u))dsdt −

∫ 1

0

∫ ∞

−∞
β′(s)Ht(u)dsdt

≤
∫R×S1

u∗ω +

∫ 1

0

Ht(x
+(t))dt−

( ∫ ∞

−∞
β′(s)ds

)( ∫ 1

0

inf
x∈M

Ht(x)dt

)

= −AH(x+) −
∫ 1

0

inf
x∈M

Ht(x)dt.

The proof of Proposition 5.2 is complete.

5.2. A formula for c(H). For a class of simple Hamiltonians the distin-

guished action value c(H) can be explicitly computed. The following theorem

will be the main ingredient in showing that the spectral metric defined in Sec-

tion 7 is non-degenerate, and together with Proposition 5.2 it will imply the

energy-capacity inequality for the π1-sensitive Hofer–Zehnder capacity given in

Section 8.

Theorem 5.3: Consider a weakly exact compact split-convex symplectic mani-

fold (M,ω), and assume that H ∈ Hc(M) has the following properties.

(H1) There exists p ∈ IntM such that Ht(p) = minx∈M Ht(x) for every

t ∈ [0, 1].

(H2) The Hessian Hess(H)(p) of H at p with respect to an ω-compatible Rie-

mannian metric satisfies

‖Hess(Ht)(p)‖ < 2π for all t ∈ [0, 1].

(H3) Every non-constant contractible periodic orbit of the flow ϕt
H has period

greater than 1.
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Then

(30) c(H) = −
∫ 1

0

Ht(p)dt.

Proof: It follows from assumptions (H1) and (H3) that the constant orbit p

is a critical point of the action functional AλH for every λ ∈ [0, 1] and that for

any other critical point y of AλH ,

(31) AλH(y) ≤ AλH(p) = −λ
∫ 1

0

Ht(p)dt, λ ∈ [0, 1].

We choose a sequence of regular admissible Hamiltonians Hn ∈ Hreg such that

Hn → H in C2 and such that each Hn satisfies (H1), (H2) and (31) for the

same point p. Since c is C2-continuous, it suffices to prove (30) for each Hn.

We fix n and from now on suppress n in the notation. We choose an admissible

Morse function F ∈ C∞(M) whose single maximum is attained at p, and as in

the previous paragraph we choose the family Hs ∈ C∞(S1 ×M) of the form

Hs = β(s)H where β: R → [0, 1] satisfies (29). Let cp be the generator in

CM(M ;F ) represented by the maximum p of F , and let xp be the generator

of CF (M ;H) represented by p. In view of the definition (24) of c(H) and the

construction of the PSS map φ: CM(M ;F ) → CF (M ;H), formula (30) follows

if we can show that for generic choice of a smooth family Js of admissible almost

complex structures which are independent of s for |s| ≥ s0 large enough, the

matrix coefficient

n(cp, xp) = #M(cp, xp) mod 2

is odd. Equivalently, we are left with showing

Lemma 5.4: For generic choice of the smooth family Js of admissible almost

complex structures independent of s for |s| ≥ s0 large enough, the number of

solutions u ∈ C∞(R× S1,M) of the problem

(32)





∂su+ Js,t(u)(∂tu−XHs,t
(u)) = 0,

lim
s→−∞

u(s, t) ∈ Wu
F (p),

lim
s→∞

u(s, t) = p,

c1(u) = 0,

is odd. Here, Wu
F (p) denotes the unstable manifold of F at p.

Proof: We choose a smooth family of smooth families of admissible almost

complex structures Jλ
s , s ∈ R, λ ∈ [0, 1], such that Jλ

s = Jλ,± is independent of
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s if |s| ≥ s0 is large enough, and consider for every λ ∈ [0, 1] the problem

(33)





∂su+ Jλ
s,t(u)(∂tu− λXHs,t

(u)) = 0,
lim

s→−∞
u(s, t) ∈ Wu

F (p),

lim
s→∞

u(s, t) = p,

c1(u) = 0.

Assumption (H2) guarantees that for each λ ∈ ]0, 1] the fixed point p of ϕ1
λH is

regular in the sense of (18), and hence for generic choice of Jλ
s the space Mtot of

pairs (u, λ) solving (33) for some λ ∈ [0, 1] is a smooth 1-dimensional manifold.

The boundary ∂Mtot of its compactification Mtot contains an even number of

elements,

(34) #∂Mtot = 0 mod 2.

For generic choice of the family Jλ
s transversality theory implies that ∂Mtot

consists of three types of points, namely the solutions of (33) for λ = 0, the

solutions of (33) for λ = 1, and broken trajectories.

1. Since [ω] vanishes on π2(M), the only solution of (33) for λ = 0 is the

constant map u ≡ p.

2. The solutions of (33) for λ = 1 are the solutions of (32) which we want to

count.

3. Solutions of (33) are in bijection with solutions as in Figure 2 consisting of

half a Morse flow line followed by a Floer disc. For generic choice of the family

Jλ
s , these solutions break off only once, either along the Morse flow line or along

the Floer disc. More precisely, for generic choice of Jλ
s , there are finitely many

values 0 < λ1 < · · · < λn < 1 for which there are broken trajectories consisting

either of pairs u1 ∈ C∞(R,M), u2 ∈ C∞(R × S1,M) which satisfy, for some

i ∈ {1, . . . , n},

(35)





∂su1 = −∇F (u1),
∂su2 + Jλi

s,t(∂tu2 − λiXHs,t
(u2)) = 0,

lim
s→−∞

u1(s, t) = p,

lim
s→∞

u1(s, t) =: q ∈ Crit2n−1(F ),

lim
s→−∞

u2(s, t) ∈ Wu
F (q),

lim
s→∞

u2(s) = p,

c1(u2) = 0,
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or pairs u1, u2 ∈ C∞(R× S1,M) which satisfy, for some i ∈ {1, . . . , n},

(36)





∂su1 + Jλi

s,t(∂tu1 − λiXHs,t
(u1)) = 0,

∂su2 + Jλi,+
t (∂tu2 − λiXHt

(u2)) = 0,
lim

s→−∞
u1(s, t) ∈ Wu

F (p),

lim
s→∞

u1(s, t) = lim
s→−∞

u2(s, t) ∈ Crit(AλiH) \ {p},
lim

s→∞
u2(s, t) = p,

c1(u1#u2) = 0,

where u1#u2 is the connected sum of the oriented spheres u1 and u2. Since p

is the only maximum of F , for each critical point q of F of index 2n− 1 there is

an even number of Morse flow lines u1 emanating from p and ending in q. This

shows that there is an even number of solutions of (35). Moreover, it follows

from formula (20) and from assumption (31) that solutions u2 of problem (36)

have non-positive energy and hence cannot exist. We conclude that there is an

even number of broken trajectories.

In view of (34), 1. and 3. we conclude that for generic choice of Js the number

of solutions of (32) is odd. This proves Lemma 5.4, and so Theorem 5.3 is also

proved.

6. The action spectrum

Recall that the action spectrum ΣH of H ∈ Hc(M) is the set

ΣH = {AH(x) | x ∈ PH}.

Difficult work of Seidel implies that for a closed weakly exact symplectic mani-

fold, ΣH = ΣK whenever H,K ∈ Hc(M) generate the same Hamiltonian diffeo-

morphisms ϕH = ϕK , see [66] and [48, Corollary 8.6.10]. As we shall show in

this section by an elementary argument, the same is true for an open (i.e., not

closed) weakly exact symplectic manifold.

Let (M,ω) be an open weakly exact symplectic manifold, and let G ∈ Hc(M)

be such that ϕG = id. To q ∈M we associate the loop

xq(t) := ϕt
G(q), t ∈ [0, 1].

If q ∈M \ suppG, then xq is the constant loop. This and the continuity of the

map q 7→ xq from M to the free loop space of M show that xq ∈ PG for all

q ∈M . We define the function IG: M → R by

IG(q) ≡ AG(xq) = −
∫

D2

x̄∗qω −
∫ 1

0

G(t, xq(t))dt
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where x̄q is a smooth extension of xq to the unit disc D2.

Proposition 6.1: The function IG vanishes identically.

Proof: If q ∈ M \ suppG, then IG(q) = 0. It remains to show that IG is

constant. To this end we choose a path r 7→ q(r) and compute

d

dr
IG(q(r)) = −

∫ 1

0

ω(dϕt
G(q)q′(r), XGt

(ϕt
G(q)))dt

−
∫ 1

0

dGt(ϕ
t
G(q))(dϕt

G(q)q′(r))dt = 0,

as desired.

Consider H,K ∈ Hc(M) such that ϕH = ϕK . We choose a smooth function

α: [0, 1] → [0, 1] such that

(37) α(t) =

{
0, t ≤ 1/6,
1, t ≥ 1/3.

The Hamiltonian G ∈ Hc(M) defined by

(38) G(t, x) =

{
α′(t)H(α(t), x), 0 ≤ t ≤ 1/2,
−α′(1 − t)K(α(1 − t), x), 1/2 ≤ t ≤ 1,

generates the loop

ϕt
G =

{
ϕ

α(t)
H , 0 ≤ t ≤ 1/2,

ϕ
α(1−t)
K , 1/2 ≤ t ≤ 1,

in Hamc(M,ω). Since all loops xq(t) = ϕt
G(q), q ∈M , t ∈ [0, 1], are contractible,

the sets PH and PK can be canonically identified, and the set

Fix◦(ϕH) = {x(0) | x ∈ PH}

of “contractible fixed points” of ϕH does not depend on H . The action of a

fixed point x ∈ Fix◦(ϕH) is defined as the action of the loop ϕt
H(x),

AH(x) := AH(ϕt
H(x)).

Corollary 6.2: Assume that H,K ∈ Hc(M) are such that ϕH = ϕK . Then

AH(x) = AK(x) for all x ∈ Fix◦(ϕH). In particular, ΣH = ΣK .

Proof: Define G ∈ Hc(M) as in (38). Then

AG(ϕt
G(x)) = AH(ϕt

H(x)) −AK(ϕt
K(x))
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for all x ∈ Fix◦(ϕH) = Fix◦(ϕK), and so Corollary 6.2 follows from Proposi-

tion 6.1.

Recall that the inverse of H ∈ Hc(M) is defined as

H−
t (x) := −Ht(ϕ

t
H(x)).

To x ∈ PH we associate the loop x− defined as

x−(t) := ϕt
H− (x(0)).

Corollary 6.3: If x ∈ PH , then x− ∈ PH− and AH− (x−) = −AH(x). In

particular, ΣH− = −ΣH .

Proof: Choose α: [0, 1] → [0, 1] as in (37) and define G ∈ Hc(M) by

G(t, x) =

{
α′(t)H(α(t), x), 0 ≤ t ≤ 1/2,
α′(t− 1/2)H−(α(t− 1/2), x), 1/2 ≤ t ≤ 1.

Then ϕG = id. For x ∈ PH the loop x− therefore belongs to PH− . Moreover,

IG(x(0)) = AH(x) + AH− (x−),

and so Proposition 6.1 yields AH−(x−) = −AH(x). Since the map x 7→ x− is a

bijection between PH and PH− , we conclude ΣH− = −ΣH .

7. The spectral metric

We consider a weakly exact compact split-convex symplectic manifold (M,ω).

For H ∈ Hc(M) let c(H) ∈ ΣH be the special critical value of AH defined in

Section 5.

Proposition 7.1: Assume that H,K ∈ Hc(M) satisfy ϕH = ϕK . Then

c(H) = c(K).

Proof: Since ϕH3K− = ϕ0 = id, Corollary 6.2 shows that ΣH3K− = Σ0 = {0}.
This and Proposition 5.1 yield c(H3K−) = 0. Together with the triangle

inequality (27) we conclude

c(H) = c(H3K−
3K) ≤ c(H3K−) + c(K) = c(K).

Interchanging the roles of H and K we obtain c(K) ≤ c(H). Proposition 7.1

follows.
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In view of Proposition 7.1 we can define c: Hamc(M) → R by

c(ϕ) = c(H) if ϕ = ϕH .

Following Viterbo, [67], and Oh, [51, 52], we define the spectral norm

γ: Hamc(M) → R
by

(39) γ(ϕ) = c(ϕ) + c(ϕ−1).

We shall often write γ(H) instead of γ(ϕH). By Proposition 5.1 and Corol-

lary 6.3, c(H) ∈ ΣH and −c(H−) ∈ ΣH , and so γ(ϕH) = γ(H) = c(H)+ c(H−)

is the difference of two special actions of ϕH .

Proposition 7.2: For every C2-small time-independent H ∈ Hc(M) we have

γ(H) = ‖H‖.

Proof: According to Theorem 5.3 we have c(H) = −minH and c(H−) =

c(−H) = maxH , and so γ(H) = c(H) + c(H−) = ‖H‖.

We recall that Sympc(M) denotes the group of symplectomorphisms of (M,ω)

whose support is contained in M \ ∂M . The following theorem, which implies

Theorem 6 of the introduction, gives a justification for calling γ a norm.

Theorem 7.3: The spectral norm γ on Hamc(M) has the following properties.

(S1) γ(id) = 0 and γ(ϕ) > 0 if ϕ 6= id;

(S2) γ(ϕψ) ≤ γ(ϕ) + γ(ψ);

(S3) γ(ϑϕϑ−1) = γ(ϕ) for all ϑ ∈ Sympc(M);

(S4) γ(ϕ) = γ(ϕ−1);

(S5) γ(ϕ) ≤ dH(ϕ, id).

Proof: The triangle inequality (S2) follows from the triangle inequality (27)

for c. For ϕH ∈ Hamc(M) and ϑ ∈ Sympc(M) we have

ϑ ◦ ϕt
H ◦ ϑ−1 = ϕt

Hϑ
for all t

where Hϑ(t, x) = H(t, ϑ−1(x)). This and the invariance of the Floer equa-

tion imply the invariance property (S3). The symmetry property (S4) follows

from definition (39). In order to prove the estimate (S5) we need to show that
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c(H) + c(H−) ≤ ‖H‖ for all H ∈ Hc(M). In view of the continuity of c, it

suffices to show this for H ∈ Hreg. According to Proposition 5.2 we have

(40) c(H) ≤ −
∫ 1

0

inf
x∈M

Ht(x)dt,

and combining Proposition 5.2 with

inf
x∈M

H−
t (x) = inf

x∈M
(−Ht(ϕ

t
H(x))) = inf

x∈M
(−Ht(x)) = − sup

x∈M
Ht(x)

we find

(41) c(H−) ≤ −
∫ 1

0

inf
x∈M

H−
t (x)dt =

∫ 1

0

sup
x∈M

Ht(x)dt.

Adding (40) and (41) we obtain c(H) + c(H−) ≤ ‖H‖, as desired.

We are left with proving (S1). If ϕ = ϕ0 = id, then c(ϕ) = c(ϕ−1) = c(0) = 0

and so γ(ϕ) = 0. In order to verify that γ is non-degenerate, we shall need the

following proposition, which will be crucial for most of our applications. Recall

that suppϕH =
⋃

t∈[0,1] suppϕt
H =

⋃
t∈[0,1] suppXHt

.

Proposition 7.4: Assume that ϕH , ψ ∈ Hamc(M) are such that ψ displaces

suppϕH . Then γ(ϕn
H) ≤ 2γ(ψ) for all n ∈ N.

Proof: We follow closely the proof of Proposition 5.1 in [66]. Note that ϕn
H =

ϕH(n) with H(n)(t, x) := nH(nt, x) for all n ∈ N. Since suppϕH(n) = suppϕH ,

it is enough to prove the claim for n = 1. Assume that ψ = ϕK . After

reparametrizing in t we can assume that Ht = 0 for t ∈ [0, 1/2] and Kt = 0 for

t ∈ [1/2, 1]. With this choice of H and K and since ϕK displaces suppϕǫH =

suppϕH for each ǫ ∈ ]0, 1] it is clear that

Fix◦(ϕǫH3K) = Fix◦(ϕK) ⊂M \ suppϕǫH ,

and so PǫH3K = PK and ΣǫH3K = ΣK for each ǫ ∈ [0, 1]. The set ΣK = ΣǫH3K

is nowhere dense, see [66, Proposition 3.7]. This and the continuity of c imply

that the map

[0, 1] → ΣK , ǫ 7→ c(ǫH3K),

is constant. In particular, c(H3K) = c(K). Since ϕK displaces suppϕH , its

inverse ϕK− displaces suppϕH− = suppϕH . An argument analogous to the

above then yields c((H3K)−) = c(K−
3H−) = c(K−). Summarizing we find

γ(H3K) = γ(K). Together with (S2) and (S4) we can thus conclude

γ(H) = γ(H3K3K−) ≤ γ(H3K) + γ(K−) = 2γ(K),

as desired.
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Assume now that ϕ 6= id. Then we find a non-empty open subset

U ⊂ M such that ϕ displaces U . According to Proposition 7.2 we can choose

H ∈ Hc(M) such that γ(H) > 0. Applying Proposition 7.4 with ψ = ϕ we get

0 < γ(H) ≤ 2γ(ϕ). The proof of Theorem 7.3 is complete.

Corollary 7.5: If ϕH ∈ Hamc(M) \ {id}, then the spectrum ΣH does not

contain only 0.

Proof: Recall that γ(H) is the difference of two elements of ΣH . The corollary

thus follows from (S1) of Theorem 7.3.

The spectral metric dγ on Hamc(M) is defined as

dγ(ϕ, ψ) := γ(ϕ ◦ ψ−1), ϕ, ψ ∈ Hamc(M).

Theorem 7.3 says that dγ is a biinvariant metric on Hamc(M) such that

dγ(ϕ, ψ) ≤ dH(ϕ, ψ) for all ϕ, ψ ∈ Hamc(M).

8. An energy-capacity inequality

In this section we shall compare the π1-sensitive Hofer–Zehnder capacity c◦HZ(A)

of a subset A ⊂ (M,ω) with the dγ-diameter of Hamc(IntA,ω). This will lead

to an energy-capacity inequality for c◦HZ, which will be a crucial tool in the

proofs of Theorems 4.A and 4.B(ii).

8.1. The π1-sensitive Hofer–Zehnder capacity. Let (M,ω) be an ar-

bitrary symplectic manifold. Given a subset A ⊂ M we consider the function

space

F(A) = {H ∈ C∞
c (IntA) | H ≥ 0, H |U = maxH for some open U ⊂ A}.

A function H ∈ F(A) is HZ-admissible if the flow ϕt
H has no non-constant

T -periodic orbit with period T ≤ 1, and H ∈ F(A) is HZ◦-admissible if

the flow ϕt
H has no non-constant T -periodic orbit with period T ≤ 1 which is

contractible in M . Set

FHZ(A,M,ω) = {H ∈ F(A) | H is HZ-admissible},
F◦

HZ(A,M,ω) = {H ∈ F(A) | H is HZ◦-admissible}.
As in [37, 38] and [44, 66] the Hofer–Zehnder capacity and the π1-sensitive

Hofer–Zehnder capacity of A ⊂ (M,ω) are defined as

cHZ(A,M,ω) = sup{‖H‖ | H ∈ FHZ(A,M,ω)},
c◦HZ(A,M,ω) = sup{‖H‖ | H ∈ F◦

HZ(A,M,ω)}.
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From now on we suppress ω from the notation. Of course, cHZ(A,M) ≤
c◦HZ(A,M). Example 8.1 below shows that this inequality can be strict. It

also shows that in contrast to cHZ, the π1-sensitive Hofer–Zehnder capacity c◦HZ

is not an intrinsic symplectic capacity as defined in [38]; it is, however, a relative

symplectic capacity and in particular satisfies the relative monotonicity axiom

(42) c◦HZ(A,M) ≤ c◦HZ(B,M) whenever A ⊂ B ⊂M.

Example 8.1: Consider the annulus A = {z ∈ R2 | 0 < |z| < 1} in (R2, ω0).

Then cHZ(A,A) = c◦HZ(A,R2) = π and c◦HZ(A,A) = ∞.

Corollary 8.2: For any subset A of a weakly exact compact split-convex

symplectic manifold (M,ω),

c◦HZ(A,M) = sup{γM (ϕH) | H ∈ F◦
HZ(A,M)}.

Proof: Fix H ∈ F◦
HZ(A,M). Then both H and H− = −H meet the as-

sumptions of Theorem 5.3, and so c(H) = 0 and c(H−) = ‖H‖. Therefore,

γM (H) = c(H) + c(H−) = ‖H‖.

8.2. An energy-capacity inequality for c◦HZ. Following [66] we define

for any subset A of a weakly exact compact split-convex symplectic manifold

(M,ω) the relative capacity cγ(A,M) = cγ(A,M,ω) ∈ [0,∞] as

cγ(A,M) = sup{γM (ϕ) | ϕ ∈ Hamc(IntA,ω)}.

Notice that cγ(A,M) is the diameter of Hamc(IntA,ω). We recall that for any

symplectic manifold (M,ω) the displacement energy e(A,M) = e(A,M,ω) of a

subset A of M is defined as

e(A,M) = inf{dH(ϕ, id) | ϕ ∈ Hamc(M,ω), ϕ(A) ∩A = ∅}.

Corollary 8.2, Proposition 7.4 and (S5) of Theorem 7.3 yield

Corollary 8.3: For any subset A of a weakly exact compact split-convex

symplectic manifold (M,ω),

cHZ(A,M) ≤ c◦HZ(A,M) ≤ cγ(A,M) ≤ 2e(A,M).

Remark 8.4: It was noticed in [28] that working directly with the action se-

lector c instead of the metric γ, one finds that the factor 2 in the inequality

c◦HZ(A,M) ≤ 2e(A,M) can be omitted, see also [22].
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This concludes the construction of our tools. In the next five sections we shall

use them to study Hamiltonian diffeomorphisms on weakly exact symplectic

manifolds which away from a compact subset look like a product of convex

symplectic manifolds. To be precise, we recall from Definition 3.1 that a com-

pact symplectic manifold with corners (M,ω) is split-convex if there exist com-

pact convex symplectic manifolds (Mj , ωj), j = 1, . . . , k, and compact subsets

K ⊂M \ ∂M and K ′ ⊂M1 × · · · ×Mk such that

(M \K,ω) = ((M1 × · · · ×Mk) \K ′, ω1 ⊕ · · · ⊕ ωk).

We say that a non-compact symplectic manifold (M,ω) is split-convex if there

exists an increasing sequence of compact split-convex submanifolds Mi ⊂ M

exhausting M , that is,

M1 ⊂M2 ⊂ · · · ⊂Mi ⊂ · · · ⊂M and
⋃

i

Mi = M.

Extension 8.5: The construction of our tools for weakly exact split-convex sym-

plectic manifolds is readily extended to weakly exact symplectic manifolds which

away from a compact subset look like a product (M × P, ωM ⊕ ωP ), where

(M,ωM ) is split-convex and P is closed. The subsequent applications stated

for weakly exact split-convex symplectic manifolds will thus hold for the wider

class of weakly exact symplectic manifolds of this form. We shall make use of

this extension only in the proof of Theorem 12.5(ii).

9. Existence of a closed orbit with non-zero action

The following result is a generalization of Theorem 1.

Theorem 9.1: Assume that (M,ω) is a weakly exact split-convex symplec-

tic manifold. Then for every Hamiltonian function H ∈ Hc(M) generating

ϕH ∈ Hamc(M,ω) \ {id} there exists x ∈ PH such that AH(x) 6= 0.

Proof: Assume that
⋃

i≥1Mi is an exhaustion of M by compact split-convex

submanifolds. Given H ∈ Hc(M) generating ϕH 6= id we choose i so large that

suppϕH ⊂ Mi. Since ϕH ∈ Hamc(Mi) \ {id}, Corollary 7.5 guarantees the

existence of x ∈ PH with AH(x) 6= 0, and so Theorem 9.1 follows.
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10. Infinitely many periodic points of Hamiltonian diffeomorphisms

We first consider a weakly exact compact split-convex symplectic manifold

(M,ω), and we let γ be the spectral norm on Hamc(M,ω) constructed in Sec-

tion 7.

Theorem 10.1: Assume that ϕH ∈ Hamc(M,ω) \ {id} is such that

γ(ϕn
H) ≤ C for all n ∈ N and some C <∞.

Then ϕH has infinitely many non-trivial geometrically distinct periodic points

corresponding to contractible periodic orbits.

Proof: We closely follow [66].

Case 1: ϕn
H = id for some n ∈ N. Then every x ∈ M is a periodic point of

ϕH , and since the support of ϕH is not all of M and since M is connected, every

x ∈M is a periodic point of ϕH corresponding to a contractible periodic orbit.

Since ϕH 6= id, infinitely many among these periodic points are non-trivial.

Case 2: ϕn
H 6= id for all n ∈ N. According to Corollary 7.5, ϕH has at

least one non-trivial periodic point corresponding to a contractible periodic

orbit. Arguing by contradiction, we assume that ϕH has only finitely many

non-trivial geometrically distinct periodic points corresponding to contractible

periodic orbits, say x1, . . . , xN . The period of xi is defined as the minimal ki ∈ N
such that ϕki

H (xi) = xi. Set k = k1k2 · · · kN and G(t, x) = kH(kt, x). Then

ϕG = ϕk
H , and x1, . . . , xN are the non-trivial periodic points of ϕG corresponding

to contractible periodic orbits. Their period is 1. By assumption,

(43) γ(ϕn
G) = γ(ϕnk

H ) ≤ C for all n ∈ N.
The spectrum ΣG consists of 0 (coming from trivial periodic points) and AG(xi),

i = 1, . . . , N . Set G(n)(t, x) = nG(nt, x). Since ϕG has no other non-trivial

periodic points corresponding to contractible periodic orbits than x1, . . . , xN ,

(44) ΣG(n) = nΣG = {0, nAG(x1), . . . , nAG(xN )}.

By assumption, ϕn
G = ϕnk

H 6= id for all n, and so

γ(ϕn
G) = γ(G(n)) = c(G(n)) + c((G(n))−) > 0 for all n ∈ N.

Recall now that c(G(n)) + c((G(n))−) is the difference of two action values

in ΣG(n) . We thus infer from (44) that γ(ϕn
G) → ∞ as n → ∞, contradict-

ing (43).

Theorem 2 is a special case of
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Corollary 10.2: Assume that (M,ω) is a weakly exact split-convex symplec-

tic manifold. If the support of ϕH ∈ Hamc(M,ω) \ {id} is displaceable, then

ϕH has infinitely many non-trivial geometrically distinct periodic points corre-

sponding to contractible periodic orbits.

Proof: Choose ψ ∈ Hamc(M,ω) which displaces suppϕH , and choose i so large

that suppψ ⊂ Mi. According to Proposition 7.4, γMi
(ϕn

H) ≤ 2γMi
(ψ) for all

n ∈ N, and so the corollary follows from Theorem 10.1.

Proof of Corollary 2: Consider a subcritical Stein manifold (V, J, f) and

ϕH ∈ Hamc(V, ωf ) \ {id}. Since f is proper, we find a regular value R such

that S = suppϕH is contained in VR = {x ∈ V | f(x) ≤ R}.
After composing f with an appropriate smooth function h: R→ R such that

h(r) = r for r ≤ R we obtain a subcritical Stein manifold (V, J, h ◦ f) such that

the gradient vector field ∇(h◦f) of h◦f with respect to the Riemannian metric

gh◦f is complete, see [1, Lemma 3.1]. Since S ⊂ VR and ωf |VR
= ωh◦f |VR

, we

have ϕH ∈ Hamc(V, ωh◦f ) \ {id}. Let CritR(h ◦ f) be the set of critical points

of h ◦ f in VR, and consider the union

∆R =
⋃

x∈CritR(h◦f)

W s
x(∇(h ◦ f))

of those stable manifolds of ∇(h ◦ f) which are contained in VR. Applying

the proof of Lemma 3.2 in [1] to S and ∆R we find a compactly supported

Hamiltonian isotopy of (V, ωh◦f ) displacing S from itself. Theorem 2 now shows

that ϕH has infinitely many non-trivial geometrically distinct periodic points

corresponding to contractible periodic orbits.

11. The Weinstein conjecture

Consider a weakly exact split-convex symplectic manifold (M,ω).

A hypersurface S in M is a C2-smooth compact connected orientable codi-

mension 1 submanifold of M without boundary. We recall that a closed char-

acteristic on S is an embedded circle in S all of whose tangent lines belong to

the distinguished line bundle

LS = {(x, ξ) ∈ TS | ω(ξ, η) = 0 for all η ∈ TxS}.

We denote by P◦(S) the set of closed characteristics on S which are contractible

in M . The reduced action of x ∈ P◦(S) is defined as

A(x) =

∣∣∣∣
∫

D2

x∗ω

∣∣∣∣



Vol. 159, 2007 HAMILTONIAN DYNAMICS 41

where x: D2 → M is a smooth disc in M bounding x. The action spectrum

of S is the subset σ(S) = {A(x) | x ∈ P◦(S)} of R. If σ(S) is non-empty, we

define λ1(S) ∈ [0,∞[ as

λ1(S) = inf{λ ∈ σ(S)}.

Examples show that σ(S) can be empty, see [27, 29]. We therefore follow [36]

and consider parametrized neighbourhoods of S. Since S is orientable, there

exists (after adding a collar ∂Mj× ]0, ǫ] to each Mj, j = 1, . . . , k, in case S

touches ∂M) an open neighbourhood I of 0 and a C2-smooth diffeomorphism

ψ: S × I → U ⊂M

such that ψ(x, 0) = x for x ∈ S. We call ψ a thickening of S, and we abbreviate

Sǫ = ψ(S × {ǫ}) and shall often write (Sǫ) instead of ψ: S × I → U .

Theorem 11.1: Assume that S is a displaceable hypersurface of a weakly exact

split-convex symplectic manifold (M,ω), and let (Sǫ) be a thickening of S. For

every δ > 0 there exists ǫ ∈ [−δ, δ] such that

P◦(Sǫ) 6= ∅ and λ1(Sǫ) ≤ 2e(S,M) + δ.

Proof: Fix δ > 0. We choose K ∈ Hc(M) such that ϕK displaces S and

‖K‖ < e(S,M) + δ/2. Let ρ ∈ ]0, δ] be so small that ϕK displaces the whole

neighbourhood Nρ := ψ(S× [−ρ, ρ]) of S. We abbreviate E = 2e(S,M)+ δ and

choose a C∞-function f : R→ [0, E] such that

f(t) = 0 if t /∈ [−ρ, ρ], f(0) = E, f ′(t) 6= 0 if t ∈ ] − ρ, ρ[\{0},

see Figure 4.

34boundary. We reall that a losed harateristi on S is an embedded irle in S all ofwhose tangent lines belong to the distinguished line bundleLS = f(x; �) 2 TS j !(�; �) = 0 for all � 2 TxSg :We denote by PÆ(S) the set of losed harateristis on S whih are ontratible in M .The redued ation of x 2 PÆ(S) is de�ned asA(x) = ����ZD2 x�!����where x : D2 ! M is a smooth dis in M bounding x. The ation spetrum of S is thesubset �(S) = fA(x) j x 2 PÆ(S)g of R. If �(S) is non-empty, we de�ne �1(S) 2 [0;1[ as�1(S) = inf f� 2 �(S)g :Examples show that �(S) an be empty, see [29, 31℄. We therefore follow [39℄ and onsiderparametrized neighbourhoods of S. Sine S is orientable, there exists (after adding a ollar�Mj�℄0; �℄ to eah Mj, j = 1; : : : ; k, in ase S touhes �M) an open neighbourhood I of 0and a C2-smooth di�eomorphism  : S � I ! U �Msuh that  (x; 0) = x for x 2 S. We all  a thikening of S, and we abbreviate S� = (S � f�g) and shall often write (S�) instead of  : S � I ! U .Theorem 11.1. Assume that S is a displaeable hypersurfae of a weakly exat split-onvexsympleti manifold (M;!), and let (S�) be a thikening of S. For every Æ > 0 there exists� 2 [�Æ; Æ℄ suh that PÆ (S�) 6= ; and �1 (S�) � 2 e (S;M) + Æ:Proof. Fix Æ > 0. We hoose K 2 H(M) suh that 'K displaes S and kKk <e (S;M) + Æ=2. Let � 2 ℄0; Æ℄ be so small that 'K displaes the whole neighbourhoodN� :=  (S � [��; �℄) of S. We abbreviate E = 2e (S;M) + Æ and hoose a C1-funtionf : R! [0; E℄ suh thatf(t) = 0 if t =2 [��; �℄; f(0) = E; f 0(t) 6= 0 if t 2 ℄� �; �[nf0g;see Figure 4. PSfrag replaements
��� t

f(t)E
Figure 4. The funtion f .Figure 4. The function f .

We define the time-independent Hamiltonian H ∈ Hc(M) by

H(x) =
{
f(t) if x ∈ St,
0 otherwise.
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If
⋃

i≥1Mi is an exhaustion of M , we choose i so large that suppϕK ⊂ Mi.

Since ϕH 6= id and since ϕH is supported in Nρ ⊂ suppϕK ⊂ Mi, we see from

(S1) of Theorem 7.3 and from Corollary 8.3 that

(45) 0 < γMi
(H) ≤ 2‖K‖ < E.

Let x+ ∈ PH and x− ∈ PH− be closed orbits for which

c(H) = AH(x+) and c(H−) = AH− (x−).

Proposition 5.2 applied to H and H− = −H yields

c(H) = AH(x+) = −
∫

D2

(x+)∗ω −
∫ 1

0

H(x+(t))dt ≤ 0,(46)

c(H−) = AH−(x−) = −
∫

D2

(x−)∗ω +

∫ 1

0

H(x−(t))dt ≤ E.(47)

Notice that not both x+ and x− are constant orbits. Indeed, if they were,

our choice of H would yield c(H) ∈ {0,−E} and c(H−) ∈ {0, E}, and so

γ(H) = c(H) + c(H−) ∈ {−E, 0, E}, contradicting (45).

Case 1: The orbit x+ is not constant. By construction of H there exists

ǫ ∈ [−ρ, ρ] ⊂ [−δ, δ] such that x+ ∈ P◦(Sǫ). The choice of H and (46)

yield −
∫

D2(x+)∗ω ≤ E. Assume that −
∫
D2(x+)∗ω < −E. Then (46) yields

c(H) < −E, and so, together with (47), γ(H) = c(H) + c(H−) < 0, contradict-

ing (45). We conclude that A(x+) = |
∫

D2(x+)∗ω| ≤ E.

Case 2: The orbit x− is not constant. Again we find ǫ ∈ [−δ, δ] such that

x− ∈ P◦(Sǫ), and arguing similarly as in Case 1 we find that A(x−) ≤ E. The

proof of Theorem 11.1 is complete.

A hypersurface S is stable if there exists a thickening (Sǫ) of S such that the

local flow ψt around S induced by ψ: S × I → U induces bundle isomorphisms

Tψǫ: LS → LSǫ

for every ǫ ∈ I. It then follows that ψ−ǫ(x) ∈ P◦(S) for every x ∈ P◦(Sǫ). Since

ψǫ → id in the C1-topology as ǫ→ 0, we conclude from Theorem 11.1 the

Corollary 11.2: Assume that S is a displaceable stable hypersurface of a

weakly exact split-convex symplectic manifold (M,ω). Then P◦(S) 6= ∅ and

λ1(S) ≤ 2e(S).

It is well-known that every hypersurface of contact type is stable, see [38], and

so Theorem 3 follows from Corollary 11.2. Corollary 3 follows from Theorem 3
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by using Cieliebak’s result in [3] or by arguing as in the proof of Corollary 2

given in the previous section.

Remark 11.3: Theorem 11.1 implies that for any displaceable thickening (Sǫ)

in a weakly exact split-convex symplectic manifold it holds that P◦(Sǫ) 6= ∅ for

a dense set of ǫ ∈ I. This result and hence the first statement of Corollary 11.2

and Theorem 3 are proved in [63] for all geometrically bounded symplectic

manifolds. The proof there uses results from Hofer geometry. For a list of

references with further results on the Weinstein conjecture we also refer to [63].

Example 11.4: We consider a stable hypersurface S in (R2n, ω0). If S has

diameter diam(S), then S is contained in a ball of radius diam(S). Since

e(B2n(r)) = πr2, we find e(S) ≤ π diam(S)2, and so

λ1(S) ≤ 2π diam(S)2,

improving the estimate in [36].

Remarks 11.5: 1. Working directly with c instead of γ, one finds that the factor

2 in the estimate in Theorem 11.1 and hence in the estimates in Corollary 11.2

and Example 11.4 can be omitted, see [22]. The estimate λ1(S) ≤ e(S) was

known before for hypersurfaces S of restricted contact type in (R2n, ω0), see [34].

If S bounds a convex domain U ⊂ R2n, then λ1(S) = cHZ(U) ≤ e(U) = e(S)

where cHZ is the Hofer–Zehnder capacity, [37].

2. Assume that S ⊂ (M,ω) is a hypersurface of contact type and that one of

the following conditions is met.

• S is simply connected.

• ω = dλ is exact and H1(S;R) = 0.

Then 0 /∈ σ(S) and σ(S) is closed, cf. [36]. Therefore, λ1(S) > 0.

Recall that Theorem 11.1 implies that for any displaceable thickening

ψ: S × I → U it holds that P◦(Sǫ) 6= ∅ for a dense set of ǫ ∈ I. Following

Hofer and Zehnder, [38, Section 4.2], we shall use the finiteness of c◦HZ(U) to

improve this result considerably. Let µ denote the Lebesgue measure on R.

Theorem 11.6: Assume that (Sǫ) with ǫ ∈ I is a displaceable thickening of a

C2-hypersurface S in a weakly exact split-convex symplectic manifold (M,ω).

Then

µ{ǫ ∈ I | P◦(Sǫ) 6= ∅} = µ(I).

Proof: We can assume thatM is compact. We can also assume that I = ]−1, 1[,

and for each ǫ ∈ ]0, 1[ we set Uǫ = ψ(S×] − ǫ, ǫ[). According to Corollary 8.3
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and since U1 is displaceable,

c◦HZ(U1,M) ≤ 2e(U1,M) <∞,

and in view of the relative monotonicity property (42) of c◦HZ the function

ǫ 7→ c◦HZ(Uǫ,M) is monotone increasing. Theorem 11.6 now follows from re-

peating the proof of Theorem 1 in [46] with C2-smooth instead of C∞-smooth

Hamiltonians and with cHZ replaced by c◦HZ.

12. Closed trajectories of a charge in a magnetic field

In this section we apply Theorem 11.6 to the existence problem of closed tra-

jectories in a magnetic field. We first prove Theorem 4.A and then discuss the

number d > 0 appearing in Theorem 4.A. In Section 12.3 we prove a general-

ization of Theorem 4.B.

12.1. Proof of Theorem 4.A. Let (N, g) and (T ∗N,ωσ) be as in

Theorem 4.A of the introduction. Since σ = dα is exact, the symplectic form

ωσ = −d(λ+π∗α) is exact. Since σ does not vanish, N is at least 2-dimensional.

For each c > 0 the energy level Ec = {H = c} is therefore a connected

C2-hypersurface, which bounds the sublevel set

Hc = {(q, p) ∈ T ∗N | H(q, p) = 1/2|p|2 ≤ c}.

We define the norm of σ as

‖σ‖ = inf{‖α‖ | dα = σ}

where ‖α‖ = maxx∈N |α(x)|. In order to apply Theorem 11.6 we need

Lemma 12.1: The symplectic manifold (T ∗N,ωσ) is convex. Indeed, Hc is

convex whenever c > 1/2‖σ‖2.

Proof: We choose a 1-form α on N such that dα = σ. Under the symplecto-

morphism

Φ: (T ∗N,ωσ) → (T ∗N,ω0), (q, p) 7→ (q, p+ α(q))

the Hamiltonian H(q, p) = 1/2|p|2 on (T ∗N,ωσ) corresponds to the Hamilto-

nian Hα(q, p) = 1/2|p−α|2 on (T ∗N,ω0). If c > 1/2‖α‖2, then the sublevel set

Hc
α = {(q, p) | Hα(q, p) ≤ c} contains N , and so the Liouville vector field∑
i pi

∂
∂pi

for ω0 intersects the boundary of Hc
α transversally. Therefore, Hc

α
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is convex. It follows that Hc = Φ−1(Hc
α) is convex whenever c > 1/2‖α‖2.

Since this is true for any α with dα = σ, the lemma follows.

Let χ(N) be the Euler characteristic of N .

Case 1: χ(N) = 0. We set

(48) d = d(g, σ) = sup{c ≥ 0 | Hc is displaceable in (T ∗N,ωσ)}.

Notice that

d = sup{c ≥ 0 | Ec is displaceable in (T ∗N,ωσ)}.

Since σ 6= 0, the zero section N of T ∗N is not Lagrangian, and so a remarkable

theorem of Polterovich, [58, 41], implies that d > 0. We shall see below that

d < ∞. Theorem 4.A follows from applying Theorem 11.6 to S = Ed/2 and a

thickening

ψ: S× ] − d/2, d/2[→
⋃

0<c<d

Ec

such that ψ(S × {ǫ}) = Eǫ+d/2.

Case 2: χ(N) 6= 0. In this case the zero section N is not displaceable for

topological reasons. We use a stabilization trick used before by Macarini in

[45]. Let S1 be the unit circle, and denote canonical coordinates on T ∗S1 by

(x, y). We consider the manifold T ∗(N × S1) = T ∗N × T ∗S1 endowed with

the split symplectic form ω = ωσ ⊕ ωS1 , where ωS1 = dx ∧ dy. In view of

Lemma 12.1, (T ∗N × T ∗S1, ω) is a weakly exact convex symplectic manifold.

Moreover, N × S1 is not Lagrangian, and χ(N × S1) = 0. Let

H1(q, p) = 1/2|p|2, H2(x, y) = 1/2|y|2, H(q, p, x, y) = 1/2|p|2 + 1/2|y|2

be the metric Hamiltonians on T ∗N , T ∗S1 and T ∗N × T ∗S1. In order to

avoid confusion, we denote their energy levels by Ec(H1), Ec(H2) and Ec(H).

Repeating the argument given in Case 1 for the Hamiltonian system

(49) H : (T ∗N × T ∗S1, ω) → R
and

(50) d = d(g, σ) = sup{c ≥ 0 | Hc is displaceable in (T ∗N × T ∗S1, ω)}

we find that

µ{c ∈ ]0, d[ | P◦(Ec(H)) 6= ∅} = d.
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Fix c ∈ ]0, d[ such that P◦(Ec(H)) 6= ∅. Since the Hamiltonian system (49)

splits, a contractible closed orbit x(t) on Ec(H) is of the form (x1(t), x2(t)),

where x1 is a contractible closed orbit on Ec1(H1) and x2 is a contractible

closed orbit on Ec2(H2) and c1 + c2 = c. Since the only contractible orbits of

H2: T
∗S1 → R are the constant orbits on E0(H2), we conclude that c2 = 0 and

c1 = c, and so x1 ∈ P◦(Ec(H1)). It follows that

µ{c ∈ ]0, d[ | P◦(Ec(H1)) 6= ∅} = d.

The proof of Theorem 4.A is complete.

Remark 12.2: The above proof makes crucial use of the fact that the closed

characteristics guaranteed by Theorem 11.6 and found via Floer homology are

contractible. Without this information, we could prove Theorem 4.A only for

manifolds with χ(N) = 0.

12.2. Comparison of d(g, σ) and 1/2‖σ‖2. It would be important to know

a computable lower bound of d(g, σ). An upper bound can be described in a

variety of ways.

Proposition 12.3: We have d(g, σ) ≤ 1/2‖σ‖2.

Proof: We assume first that χ(N) = 0. Arguing by contradiction, we assume

that d = d(g, σ) > 1/2‖σ‖2. We then find a 1-form α on N such that dα = σ

and d > 1/2‖α‖2. By definition of d, the graph Γ−α of −α, which is contained

in H1/2‖α‖2

, is then a displaceable subset of (T ∗N,ωσ), and so the zero sec-

tion Φ(Γ−α) of T ∗N is a displaceable subset of (T ∗N,ω0). This contradicts a

Lagrangian intersection result of Gromov, [33].

Assume now that χ(N) 6= 0. We denote by gS1 the Riemannian metric of the

unit circle. By definition of d(g, σ) and by the already proved case,

d(g, σ) = d(g ⊕ gS1 , σ ⊕ 0) ≤ 1/2‖σ ⊕ 0‖2 ≤ 1/2‖σ‖2.

The proof of Proposition 12.3 is complete.

An important number associated with the Hamiltonian system (3) is Mañé’s

strict critical value c0(g, σ) for whose definition and relevance we refer to [55,

8, 56]. Let α be such that dα = σ. According to Corollary 1 in [8], c0(g, σ) is

given by

(51) c0(g, σ) = inf max
x∈N

1/2|β(x) − α(x)|2
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where the infimum is taken over all closed 1-forms β on N . It follows that

(52) c0(g, σ) = 1/2‖σ‖2.

We denote by Λ−α the set of Lagrangian submanifolds in (T ∗N,ωσ) which are

Lagrangian isotopic to the graph Γ−α of −α. Combining (51) with a result in

[56], we find

c0(g, σ) = inf{c ∈ R | Hc contains a Lagrangian submanifold in Λ−α}.

This is a purely symplectic characterization of c0(g, σ) = 1/2‖σ‖2.

We recall from Theorem 4.A that P◦(Ec) 6= ∅ for almost all c ∈ ]0, d(g, σ)].

It follows from Lemma 12.1 and a theorem of Hofer and Viterbo, [35], that Ec

carries a closed orbit whenever c > 1/2‖σ‖2. More precisely, for every non-

trivial homotopy class h ∈ π1(N) and every c > c0(g, σ) = 1/2‖σ‖2 there exists

a closed orbit on Ec whose projection to N lies in h, see [9, Theorem 27]. The

following example shows that P◦(Ec) can be empty for all c ≥ 1/2‖σ‖2. It also

shows that there can be a gap between d(g, σ) and 1/2‖σ‖2.

Example 12.4: Let N be a closed orientable surface of genus 2. It has been

shown in [55] that there exists a Riemannian metric g and an exact 2-form σ

on N such that

(i) c0(g, σ) > 1/2;

(ii) the restriction of the flow of (3) to Ec is Anosov for all c ≥ 1/2.

Property (ii) implies that P◦(Ec) = ∅ for all c ≥ 1/2, and so, by Theorem 4.A,

Property (i) and (52),

d(g, σ) ≤ 1/2 < c0(g, σ) = 1/2‖σ‖2.

12.3. Proof of Theorem 4.B. Our most general result about the existence

of closed orbits of magnetic flows is

Theorem 12.5: Assume that N = N1 ×N2 ×N3 is a closed manifold, where

N1 is any closed manifold, N2 = Tm is a torus (or a point) and N3 = ×iΣi is a

product of closed orientable surfaces of genus at least 2 (or a point); and assume

that N is endowed with a C2-smooth Riemannian metric g and a non-vanishing

closed 2-form σ such that

[σ] = 0 ⊕ [σ2] ⊕ [σ3] ∈ H2(N1) ⊕H2(N2) ⊕H2(N3) ⊂ H2(N)

and such that σ3 is cohomologically split in the sense that

[σ3] ∈ ⊕iR[Σi] = ⊕iH
2(Σi) ⊂ H2(×iΣi).
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(i) If [σ2] = 0, there exists d > 0 such that P◦(Ec) 6= ∅ for almost all c ∈ ]0, d[.

(ii) If [σ2] 6= 0, then P◦(Ec) 6= ∅ for almost all c > 0.

For N2 and N3 a point, Theorem 12.5 is Theorem 4.A, and for N1 a point

and N2 or N3 a point, Theorem 12.5 is a generalization of Theorem 4.B.

Proof of Theorem 12.5: The proof is divided into four steps.

Step 1: (T ∗Σ, ωσ) is convex if Σ is not a torus. We consider a closed orientable

surface Σ different from the torus, and we endow Σ with a Riemannian metric g

of constant curvature k. We fix an orientation of Σ, denote the area form on Σ

by τ , and consider the 2-form σ = sτ for some s ∈ R. Recall that ωσ = ω0−π∗σ.

The following lemma and the subsequent remark were explained to us by Viktor

Ginzburg.

Lemma 12.6: The symplectic manifold (T ∗Σ, ωσ) is convex. Indeed, if Σ = S2,

then Hc is convex for all c > 0, and if genus(Σ) ≥ 2, then Hc is convex for all

c > −s2/(2k).

Proof: We fix c > 0 and consider Ec as an oriented S1-bundle

(53) S1 −→ Ec
πc−→ N.

Let Xc be the geodesic spray on Ec, let Yc be the vector field on Ec generating

the S1-action, and let αc be the connection 1-form of the bundle (53). Then

(54) αc(Xc) = 0, αc(Yc) = 1, dαc = −π∗
c (kτ).

Varying over c > 0 we obtain vector fields X,Y and a 1-form α on T ∗N \ N
such that α|Ec

= αc and dα = −π∗(kτ). Since N is not the torus, k 6= 0, and

so we can set β = −(s/k)α. Then

dβ = −(s/k)dα = π∗(sτ) = π∗σ on T ∗N \N.

Therefore,

(55) d(−λ− β) = ωσ.

The vector field XH = X − sY on T ∗N \N is the Hamiltonian vector field of

H(q, p) = 1/2|p|2 with respect to ωσ. In particular, XH |Ec
is a section of the

distinguished line bundle LEc
for every c > 0. Notice that λ(X)|Ec

= 2c and

λ(Y ) = 0. Moreover, β = −(s/k)α and (54) yield β(X) = 0 and β(Y ) = −(s/k).

Therefore,

(56) (−λ− β)(XH) = −2c− (s2/k).
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Equations (55) and (56) show that if N = S2, then Ec is of contact type for

every c > 0, and if genus(N) ≥ 2, then Ec is of contact type if c 6= s2/(2k). If

s = 0, all these hypersurfaces are convex boundaries of Hc, and so the claim

follows.

Remark 12.7: For homological reasons, (T ∗N,ωσ) is not convex if σ is not

exact and N is a 2-torus or dimN ≥ 3.

Step 2: Transition to a split form. Let now N , g and σ be as in Theorem 12.5.

We denote the area form τ considered in Lemma 12.6 by τΣ. By assumption on

the form σ3 there are real numbers si such that [σ3] = ⊕isi[τΣi
] ∈ H2(×iΣi).

Define the closed 2-form σ0 on N = N1 ×N2 ×N3 as

σ0 = 0 ⊕ τT ⊕i siτΣi

where τT is the unique translation-invariant 2-form on Tm cohomologous to σ2.

By assumption on σ there exists a 1-form α on N such that σ = σ0 +dα. Under

the symplectomorphism

(57) Φ: (T ∗N,ωσ) → (T ∗N,ωσ0), (q, p) 7→ (q, p+ α(q))

the Hamiltonian H(q, p) = 1/2|p|2 on (T ∗N,ωσ) corresponds to the Hamilto-

nian Hα(q, p) = 1/2|p − α|2 on (T ∗N,ωσ0). The sublevel set Hc
α = Φ(Hc) =

{(q, p) | Hα(q, p) ≤ c} is displaceable in (T ∗N,ωσ0) if and only if Hc is displace-

able in (T ∗N,ωσ), and Φ maps P◦(Ec) bijectively to the set P◦(Eα
c ) of closed

characteristics on the boundary Eα
c = Φ(Ec) of Hc

α which are contractible in

T ∗N .

Step 3: Proof of (i): Since [σ2] = 0 we have τT = 0. In view of Lemmta 12.1

and 12.6 the symplectic manifold

(T ∗N,ωσ0) = (T ∗(N1 ×N2), ω0) ×i (T ∗Σi, ωsiτΣi
)

is a product of weakly exact convex symplectic manifolds. We define d = d(g, σ)

as in (48) or (50). We can assume without loss of generality that d is finite.

Proceeding as in the proof of Theorem 4.A with (T ∗N,ωσ), H , Hc and Ec

replaced by (T ∗N,ωσ0), Hα, Hc
α and Eα

c we find that P◦(Eα
c ) 6= ∅ for almost

all c ∈ ]0, d[, and so P◦(Ec) 6= ∅ for almost all c ∈ ]0, d[.

Step 4: Proof of (ii): We fix d > 0. Since [σ2] 6= 0 the manifold (T ∗Tm, ωτT
)

is not convex. However, according to the proof of Theorem 3.1 in [30], there

exists a symplectic embedding

(58) ϕ: (T ∗√
2d+‖α‖T

m, ωτT
) →֒ (R2k × T 2(m−k),Ωcan ⊕ ΩT )
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which induces an injection on π1. Here, 2k > 0 and ΩT is a translation-invariant

symplectic form on T 2(m−k). Notice that

(M,ω) = (T ∗N1, ω0) × (R2k × T 2(m−k),Ωcan ⊕ ΩT ) ×i (T ∗Σi, ωsiτΣi
)

is the product of a weakly exact split-convex symplectic manifold and a weakly

exact closed symplectic manifold, and that every compact subset of (M,ω) is

displaceable. Applying Extension 8.5 and Theorem 11.6 to the hypersurfaces

E′
c = (id×ϕ× id)(Φ(Ec)), c ∈ ]0, d[,

of (M,ω) we find that P◦(E′
c) 6= ∅ for almost all c ∈ ]0, d[. Using that ϕ is

injective on π1, we conclude that P◦(Ec) 6= ∅ for almost all c ∈ ]0, d[. Since

d > 0 was arbitrary, Theorem 12.5(ii) follows.

Remarks 12.8: 1. In view of Example 12.4, the number d > 0 in Theo-

rem 4.B(i) cannot be chosen arbitrarily large in general. Here is a simpler

example illustrating this fact: Let N be a closed oriented surface equipped with

a metric of constant curvature −1, and let σ be the area form on N . If c ≥ 1/2,

then P◦(Ec) = ∅, see [26, Example 3.7].

2. In the situation of Theorem 12.5(ii), d(g, σ) defined by (48) is infinite. Indeed,

according to the proof of Theorem 3.1 in [30], (T ∗Tm, ωτT
) is symplectomorphic

to the product R2k ×W with 2k > 0, where R2k is equipped with its standard

symplectic form and W = Rm−2k × Tm is given a translation-invariant sym-

plectic form. It follows that d(g, σ0) is infinite, and so d(g, σ) is also infinite.

13. Lagrangian intersections

Theorem 5 is a special case of

Theorem 13.1: Assume that (M,ω) is a weakly exact split-convex symplectic

manifold, and let L ⊂M \ ∂M be a closed Lagrangian submanifold such that

(i) the injection L ⊂M induces an injection π1(L) ⊂ π1(M);

(ii) L admits a Riemannian metric none of whose closed geodesics is con-

tractible.

Then L is not displaceable.

Proof: We can assume thatM is compact. Arguing by contradiction we assume

that ψ ∈ Hamc(M,ω) displaces L and hence a neighbourhood U of L in M . We

choose a Riemannian metric as in (ii) and denote by |p| the length of a covector
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(q, p) ∈ T ∗L. By Weinstein’s Theorem we find ǫ > 0 such that a neighbourhood

V of L in U can be symplectically identified with T ∗
3ǫL. Choose a smooth

function f : [0, 3ǫ] → [0, 1] such that

f(r) = −1 if r ≤ ǫ, f(r) = 0 if r ≥ 2ǫ, f ′(r) > 0 if r ∈ ]ǫ, 2ǫ[.

We choose canonical coordinates (q, p) on T ∗
3ǫL ≡ V and define the autonomous

Hamiltonian H : M → R by

H(x) = H(p) = f(|p|) if x = (q, p) ∈ V, H(x) = 0 otherwise.

Set again H(n)(t, x) = nH(nt, x) so that ϕH(n) = ϕn
H . By assumptions (i) and

(ii) and by our choice of H , the only contractible periodic orbits of ϕt
H are fixed

points, and so ΣH(n) = {0, n}. Since ϕn
H 6= id, γ(ϕn

H) > 0, and so we conclude

that

(59) γ(ϕn
H) = n→ ∞ as n→ ∞.

On the other hand, ϕn
H is supported in V for all n, and ψ(V ) ∩ V = ∅. Propo-

sition 7.4 thus yields γ(ϕn
H) ≤ 2γ(ψ), which by (59) is a contradiction.

Remarks 13.2: 1. In [43], Lalonde and Polterovich used the general energy-

capacity inequality to prove the conclusion of Theorem 13.1 for any symplectic

manifold (M,ω) and any closed Lagrangian submanifold L ⊂M \∂M satisfying

(i) and

(ii’) L admits a Riemannian metric of non-positive curvature.

Of course, (ii’) implies (ii). We show by an example that (ii) is a weaker con-

dition than (ii’). Let H be the (2k+ 1)-dimensional Heisenberg group endowed

with any left invariant Riemannian metric, and choose a discrete cocompact

subgroup Γ ⊂ H . The Riemannian exponential map from the Lie algebra of H

to H is not injective, but there are no closed geodesics, see e.g. [11]. Therefore,

Γ \ H satisfies condition (ii). On the other hand, π1(Γ \ H) = Γ is nilpotent,

and so Γ \H cannot satisfy (ii’), see [32, 69].

2. By replacing the spectral norm ingredient in the above proof by results from

Hofer geometry, Theorem 13.1 is proved in [63] for all geometrically bounded

symplectic manifolds.
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(2000), 655–684.

[10] G. Contreras, L. Macarini and G. P. Paternain, Periodic orbits for exact magnetic

flows on surfaces, International Mathematics Research Notices (2004), 361–387.

[11] P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric,

Annales Scientifiques de l’École Normale Supérieure 27 (1994), 611–660.

[12] Ya. Eliashberg, Topological characterization of Stein manifolds of dimension > 2,

International Journal of Mathematics 1 (1990), 29–46.

[13] Ya. Eliashberg, Symplectic geometry of plurisubharmonic functions, With notes

by Miguel Abreu. NATO Advanced Science Institutes Ser. C Math. Phys. Sci.,

488, Gauge theory and symplectic geometry (Montreal, 1995), Kluwer Acad.

Publ., Dordrecht, 1997, pp. 49–67.

[14] Ya. Eliashberg and M. Gromov, Convex symplectic manifolds, in Several Com-

plex Variables and Complex Geometry, Proceedings, Summer Research Institute,

Santa Cruz, 1989, Part 2, (E. Bedford et al., eds.), Proceedings of Symposia in

Pure Mathematics 52, American Mathematical Society, Providence, RI, 1991,

pp. 135–162.



Vol. 159, 2007 HAMILTONIAN DYNAMICS 53

[15] A. Floer, A relative Morse index for the symplectic action, Communications on

Pure and Applied Mathematics 41 (1988), 393–407.

[16] A. Floer, The unregularized gradient flow of the symplectic action, Communica-

tions on Pure and Applied Mathematics 41 (1988), 775–813.

[17] A. Floer, Morse theory for Lagrangian intersections, Journal of Differential Ge-

ometry 28 (1988), 513–547.

[18] A. Floer, Witten’s complex and infinite-dimensional Morse theory, Journal of

Differential Geometry 30 (1989), 207–221.

[19] A. Floer and H. Hofer, Symplectic homology. I. Open sets in Cn, Mathematische

Zeitschrift 215 (1994), 37–88.

[20] A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for

the symplectic action, Duke Mathematical Journal 80 (1995), 251–292.

[21] U. Frauenfelder, Floer homology of symplectic quotients and the Arnold–Givental

conjecture, Diss. ETH No. 14981. Zürich 2003. Available at
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